我想做两个PCollections的笛卡尔积。 PCollection都不能适应内存,所以做侧输入是不可行的。
我的目标是:我有两个数据集。一个是小尺寸的许多元素。另一个是非常大的很少(~10)。我想获取这两个元素的乘积,然后生成键值对象。
答案 0 :(得分:2)
我认为CoGroupByKey可能适用于您的情况:
https://cloud.google.com/dataflow/model/group-by-key#join
这就是我为类似的用例所做的。虽然我的内存可能没有受到限制(你是否尝试过更大的机器群?):
PCollection<KV<String, TableRow>> inputClassifiedKeyed = inputClassified
.apply(ParDo.named("Actuals : Keys").of(new ActualsRowToKeyedRow()));
PCollection<KV<String, Iterable<Map<String, String>>>> groupedCategories = p
[...]
.apply(GroupByKey.create());
所以收藏品都用同一把钥匙键入。
然后我宣布了标签:
final TupleTag<Iterable<Map<String, String>>> categoryTag = new TupleTag<>();
final TupleTag<TableRow> actualsTag = new TupleTag<>();
合并他们:
PCollection<KV<String, CoGbkResult>> actualCategoriesCombined =
KeyedPCollectionTuple.of(actualsTag, inputClassifiedKeyed)
.and(categoryTag, groupedCategories)
.apply(CoGroupByKey.create());
在我的情况下,最后一步 - 重新格式化结果(来自连续流程中的标记组:
actualCategoriesCombined
.apply(
ParDo.named("Actuals : Formatting")
.of(
new DoFn<KV<String, CoGbkResult>, TableRow>() {
@Override
public void processElement(ProcessContext c) throws Exception {
KV<String, CoGbkResult> e = c.element();
Iterable<TableRow> actualTableRows = e.getValue().getAll(actualsTag);
Iterable<Iterable<Map<String, String>>> categoriesAll = e.getValue().getAll(categoryTag);
for (TableRow row : actualTableRows) {
// Some of the actuals do not have categories
if (categoriesAll.iterator().hasNext()) {
row.put("advertiser", categoriesAll.iterator().next());
}
c.output(row);
}
}
}
)
)
希望这会有所帮助。再次 - 不确定内存限制。如果你尝试这种方法,请告诉结果。
答案 1 :(得分:0)
import org.apache.beam.sdk.extensions.joinlibrary.Join;
...
// Use function Join.fullOuterJoin(final PCollection<KV<K, V1>> leftCollection, final PCollection<KV<K, V2>> rightCollection, final V1 leftNullValue, final V2 rightNullValue)
// and the same key for all rows to create cartesian product as it is shown below:
public static void process(Pipeline pipeline, DataInputOptions options) {
PCollection<KV<Integer, CpuItem>> cpuList = pipeline
.apply("ReadCPUs", TextIO.read().from(options.getInputCpuFile()))
.apply("Creating Cpu Objects", new CpuItem()).apply("Preprocess Cpu",
MapElements
.into(TypeDescriptors.kvs(TypeDescriptors.integers(), TypeDescriptor.of(CpuItem.class)))
.via((CpuItem e) -> KV.of(0, e)));
PCollection<KV<Integer, GpuItem>> gpuList = pipeline
.apply("ReadGPUs", TextIO.read().from(options.getInputGpuFile()))
.apply("Creating Gpu Objects", new GpuItem()).apply("Preprocess Gpu",
MapElements
.into(TypeDescriptors.kvs(TypeDescriptors.integers(), TypeDescriptor.of(GpuItem.class)))
.via((GpuItem e) -> KV.of(0, e)));
PCollection<KV<Integer,KV<CpuItem,GpuItem>>> cartesianProduct = Join.fullOuterJoin(cpuList, gpuList, new CpuItem(), new GpuItem());
PCollection<String> finalResultCollection = cartesianProduct.apply("Format results", MapElements.into(TypeDescriptors.strings())
.via((KV<Integer, KV<CpuItem,GpuItem>> e) -> e.getValue().toString()));
finalResultCollection.apply("Output the results",
TextIO.write().to("fps.batchproc\\parsed_cpus").withSuffix(".log"));
pipeline.run();
}
在此行上方的代码中
...
.via((CpuItem e) -> KV.of(0, e)));
...
我为输入数据中可用的所有行创建键等于0的Map。结果,所有行都匹配。等于没有WHERE子句的SQL表达式JOIN