我有一个函数,它使用生成器循环浮点坐标的大型2D python列表,以创建表示坐标之间距离的整数平面列表。
point_input = {"x": -8081441.0, "y": 5685214.0}
output = [-8081441, 5685214]
polyline_input = {"paths" : [[-8081441.0, 5685214.0], [-8081446.0, 5685216.0], [-8081442.0, 5685219.0], [-8081440.0, 5685211.0], [-8081441.0, 5685214.0]]}
output = [[-8081441, 5685214, 5, -2, -4, -3, -2, 8, 1, -3]]
polygon_input = {"rings" : [[-8081441.0, 5685214.0], [-8081446.0, 5685216.0], [-8081442.0, 5685219.0], [-8081440.0, 5685211.0], [-8081441.0, 5685214.0]]}
output = [[-8081441, 5685214, 5, -2, -4, -3, -2, 8, 1, -3]]
纯python:
def geometry_to_distance(geometry, geometry_type):
def calculate_distance(coords):
iterator = iter(coords)
previous_x, previous_y = iterator.next()
yield int(previous_x)
yield int(previous_y)
for current_x, current_y in iterator:
yield int(previous_x - current_x)
yield int(previous_y - current_y)
previous_x, previous_y = current_x, current_y
if geometry_type == "POINT":
distance_array = [int(geometry["x"]), int(geometry["y"])]
elif geometry_type == "POLYLINE":
distance_array = [list(calculate_distance(path)) for path in geometry["paths"]]
elif geometry_type == "POLYGON":
distance_array = [list(calculate_distance(ring)) for ring in geometry["rings"]]
else:
raise Exception("{} geometry type not supported".format(geometry_type))
return distance_array
对于速度性能,我想使用相同功能的cython实现。我在calculate_distance
函数中使用了整数变量的类型声明。
cython实施:
def geometry_to_distance(geometry, geometry_type):
def calculate_distance(coords):
cdef int previous_x, previous_y, current_x, current_y
iterator = iter(coords)
previous_x, previous_y = iterator.next()
yield previous_x
yield previous_y
for current_x, current_y in iterator:
yield previous_x - current_x
yield previous_y - current_y
previous_x, previous_y = current_x, current_y
if geometry_type == "POINT":
distance_array = [geometry["x"], geometry["y"]]
elif geometry_type == "POLYLINE":
distance_array = [list(calculate_distance(path)) for path in geometry["paths"]]
elif geometry_type == "POLYGON":
distance_array = [list(calculate_distance(ring)) for ring in geometry["rings"]]
else:
raise Exception("{} geometry type not supported".format(geometry_type))
return distance_array
这里有一个可用于对功能进行基准测试的脚本:
import time
from functools import wraps
import numpy as np
import geometry_converter as gc
def timethis(func):
'''Decorator that reports the execution time.'''
@wraps(func)
def wrapper(*args, **kwargs):
start = time.time()
result = func(*args, **kwargs)
end = time.time()
print(func.__name__, end-start)
return result
return wrapper
def prepare_data(featCount, size):
''' Create arrays of polygon geometry (see polygon_input above)'''
input = []
for i in xrange(0, featCount):
polygon = {"rings" : []}
#random x,y coordinates inside a quadrant of the world bounding box in a spherical mercator (epsg:3857) projection
ys = np.random.uniform(-20037507.0,0,size).tolist()
xs = np.random.uniform(0,20037507.0,size).tolist()
polygon["rings"].append(zip(xs,ys))
input.append(polygon)
return input
@timethis
def process_data(data):
output = [gc.esriJson_to_CV(x, "POLYGON") for x in data]
return output
data = prepare_data(100, 100000)
process_data(data)
是否有改进可以提高cython实现的性能?也许通过使用2D cython数组或carray?
答案 0 :(得分:1)
没有生成器重写的Python是
In [362]: polyline_input = {"paths" : [[-8081441.0, 5685214.0], [-8081446.0, 568
...: 5216.0], [-8081442.0, 5685219.0], [-8081440.0, 5685211.0], [-8081441.0
...: , 5685214.0]]}
In [363]: output=polyline_input['paths'][0][:] # copy
In [364]: i0,j0 = output
...: for i,j in polyline_input['paths'][1:]:
...: output.extend([i0-i, j0-j][:])
...: i0,j0 = i,j
...:
In [365]: output
Out[365]: [-8081441.0, 5685214.0, 5.0, -2.0, -4.0, -3.0, -2.0, 8.0, 1.0, -3.0]
我只想通过其他方式来表达计算。我本可以将append
用于对列表而不是平面列表。
等效数组:
In [375]: arr=np.array(polyline_input['paths'])
In [376]: arr[1:,:]=arr[:-1,:]-arr[1:,:]
In [377]: arr.ravel().tolist()
Out[377]: [-8081441.0, 5685214.0, 5.0, -2.0, -4.0, -3.0, -2.0, 8.0, 1.0, -3.0]
忽略将列表转换为数组的成本,这看起来像是一个高效的numpy操作。为了在cython中改进它,我希望你必须将数组转换为memoryview,并在成对的值上迭代c
样式。
我忘了为什么要切换到这种距离格式。你想保存一些文件空间吗?或加快一些下游计算?