如何实现tensorflow会话配置

时间:2016-12-07 23:01:07

标签: python memory tensorflow config

我想按照this topic中的说明设置gpu限制。

但我的代码是这样的:

deep_grap = tf.Graph()
with deep_grap.as_default():
    ### graph definition here
    ### graph definition here

with tf.Session(graph=deep_grap) as sess:
    tf.initialize_all_variables().run()
    ### more computations here

在这种情况下,如何在我的代码中设置配置? 我这里没有直接sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options))行。谢谢!

2 个答案:

答案 0 :(得分:0)

您可以在tf.ConfigProto声明的tf.Session()初始值设定项中传递会话配置with

deep_graph = tf.Graph()
with deep_graph.as_default():
    ### graph definition here
    ### graph definition here

config = tf.ConfigProto(gpu_options=...)

with tf.Session(graph=deep_graph, config=config) as sess:
    tf.initialize_all_variables().run()
    ### more computations here

答案 1 :(得分:0)

deep_grap = tf.Graph()
with deep_grap.as_default():
    ### graph definition here
    ### graph definition here
    init = tf.initialize_all_variables()

gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.333)
cfg = tf.ConfigProto(gpu_options=gpu_options)
with tf.Session(graph=deep_grap, config=cfg) as sess:
    sess.run(init)

    ### more computations here