使用Pandas读取数据(.dat文件)

时间:2016-12-07 19:08:56

标签: python pandas dataframe

如何使用Pandas读取以下(两列)数据(来自.dat文件)

TIME                      XGSM
2004 006 01 00 01 37 600  1
2004 006 01 00 02 32 800  5
2004 006 01 00 03 28 000  8
2004 006 01 00 04 23 200  11
2004 006 01 00 05 18 400  17

列分隔符是(至少)2个空格。

我试过

df = pd.read_table("test.dat", sep="\s+", usecols=['TIME', 'XGSM'])
print df

但它打印

   TIME  XGSM
   2004     6
   2004     6
   2004     6
   2004     6
   2004     6

2 个答案:

答案 0 :(得分:5)

还可以尝试pd.read_fwf()将固定宽度格式化的行表读入DataFrame ):

import pandas as pd
from io import StringIO

pd.read_fwf(StringIO("""TIME                      XGSM
2004 006 01 00 01 37 600  1
2004 006 01 00 02 32 800  5
2004 006 01 00 03 28 000  8
2004 006 01 00 04 23 200  11
2004 006 01 00 05 18 400  17"""), usecols = ["TIME", "XGSM"])

#   TIME    XGSM
#0  2004    1
#1  2004    5
#2  2004    8
#3  2004    11
#4  2004    17

答案 1 :(得分:2)

您可以使用带有列顺序的参数usecols:

import pandas as pd
from pandas.compat import StringIO

temp=u"""TIME             XGSM
2004 006 01 00 01 37 600  1
2004 006 01 00 02 32 800  5
2004 006 01 00 03 28 000  8
2004 006 01 00 04 23 200  11
2004 006 01 00 05 18 400  17"""
#after testing replace StringIO(temp) to filename
df = pd.read_csv(StringIO(temp), 
                 sep="\s+", 
                 skiprows=1, 
                 usecols=[0,7], 
                 names=['TIME','XGSM'])

print (df)
   TIME  XGSM
0  2004     1
1  2004     5
2  2004     8
3  2004    11
4  2004    17

编辑:

您可以使用分隔符regex - 2个或更多空格,然后添加engine='python',因为警告:

  

ParserWarning:回归' python'引擎,因为' c'引擎不支持正则表达式分隔符(分隔符> 1个字符,不同于' \ s +'被解释为正则表达式);您可以通过指定engine =' python'。

来避免此警告
import pandas as pd
from pandas.compat import StringIO

temp=u"""TIME              XGSM
2004 006 01 00 01 37 600   1
2004 006 01 00 02 32 800   5
2004 006 01 00 03 28 000   8
2004 006 01 00 04 23 200   11
2004 006 01 00 05 18 400   17"""
#after testing replace StringIO(temp) to filename
df = pd.read_csv(StringIO(temp), sep=r'\s{2,}', engine='python')

print (df)
                       TIME  XGSM
0  2004 006 01 00 01 37 600     1
1  2004 006 01 00 02 32 800     5
2  2004 006 01 00 03 28 000     8
3  2004 006 01 00 04 23 200    11
4  2004 006 01 00 05 18 400    17