我有两个模型:用户和图像。用户有profile_image_id
列。
当我获得include {model:Images, as:'profileImage', attributes:['filename']}
的用户时,我将profileImage
作为filename
作为属性的对象。
Sequelize中是否有办法将'filename'作为User模型的属性? 执行的意义
SELECT u.id, u.name, i.filename
FROM users u
LEFT JOIN images i ON i.id = u.profile_image_id
WHERE u.id = 1
现在有用的是在用户上定义VIRTUAL
属性profileImageFIlename
,然后在用户模型的afterFind
函数中填充它。但这似乎是很多额外的工作和不必要的数据。
除了原始查询之外还有更好的方法吗?
答案 0 :(得分:4)
简短的回答是,没有办法可以减少工作量。#34;即使在您的示例SQL查询中,您也可以使用为相关i.filename
表创建的别名来引用images
。这有效地映射到User.images.filename
,这与User.profile_image_file
一样可用。
如果您希望profile_image_id
VIRTUAL
作为User
上的VIRTUAL
字段存在,那么您正在以正确的方式进行操作 - images
字段不会被保留到数据库模式,因此您需要从其他来源设置它们。在这种情况下,相关的afterfind()
表提供了值,您需要在User
挂钩中设置它。
如果您不关心Instance
Model
或User.findById(1, {
attributes: {
include: [[Sequelize.literal('images.filename'), 'profile_image_file']],
},
include: [{ model: Images, as: 'images', attributes: [] }]
})
.then((user) => {
// There will be a user.dataValues.profile_image_file value populated
// but not a user.profile_image_file unless you set it in afterFind()
console.log(user.dataValues);
});
,并且只想在不必遍历对象的情况下访问结果中的值,可以使用以下内容通过利用Sequelize.literal()
来对列进行别名。
SELECT `user`.`id`, `user`.`name`, images.filename AS `profile_image_file`
FROM `user` AS `user`
LEFT OUTER JOIN `images` AS `images` ON `user`.`profile_image_id` = `images`.`id`
WHERE `user`.`id` = 1;
这将导致SQL
from caffe import layers as L, params as P
def custom_net(lmdb, batch_size):
# define your own net!
n = caffe.NetSpec()
if lmdb is None: # "deploy" flavor
# assuming your data is of shape 3x224x224
n.data = L.Input(input_param={'shape':{'dim':[1,3,224,224]}})
else:
# keep this data layer for all networks
n.data, n.label = L.Data(batch_size=batch_size, backend=P.Data.LMDB, source=lmdb,
ntop=2, transform_param=dict(scale=1. / 255))
# the other layers common to all flavors: train/val/deploy...
n.conv1 = L.Convolution(n.data, kernel_size=6,
num_output=48, weight_filler=dict(type='xavier'))
n.pool1 = L.Pooling(n.conv1, kernel_size=2, stride=2, pool=P.Pooling.MAX)
n.conv2 = L.Convolution(n.pool1, kernel_size=5,
num_output=48, weight_filler=dict(type='xavier'))
n.pool2 = L.Pooling(n.conv2, kernel_size=2, stride=2, pool=P.Pooling.MAX)
n.conv3 = L.Convolution(n.pool2, kernel_size=4,
num_output=48, weight_filler=dict(type='xavier'))
n.pool3 = L.Pooling(n.conv3, kernel_size=2, stride=2, pool=P.Pooling.MAX)
n.conv4 = L.Convolution(n.pool3, kernel_size=2,
num_output=48, weight_filler=dict(type='xavier'))
n.pool4 = L.Pooling(n.conv4, kernel_size=2, stride=2, pool=P.Pooling.MAX)
n.fc1 = L.InnerProduct(n.pool4, num_output=50,
weight_filler=dict(type='xavier'))
# do you "drop" i deploy as well? up to you to decide...
n.drop1 = L.Dropout(n.fc1, dropout_param=dict(dropout_ratio=0.5))
n.score = L.InnerProduct(n.drop1, num_output=2,
weight_filler=dict(type='xavier'))
if lmdb is None:
n.prob = L.Softmax(n.score)
else:
# keep this loss layer for all networks apart from "Deploy"
n.loss = L.SoftmaxWithLoss(n.score, n.label)
return n.to_proto()