我正在使用map
库中的purrr
函数来应用segmented
函数(来自segmented
库),如下所示:
library(purrr)
library(dplyr)
library(segmented)
# Data frame is nested to create list column
by_veh28_101 <- df101 %>%
filter(LCType=="CFonly", Lane %in% c(1,2,3)) %>%
group_by(Vehicle.ID2) %>%
nest() %>%
ungroup()
# Functions:
segf2 <- function(df){
try(segmented(lm(svel ~ Time, data=df), seg.Z = ~Time,
psi = list(Time = df$Time[which(df$dssvel != 0)]),
control = seg.control(seed=2)),
silent=TRUE)
}
segf2p <- function(df){
try(segmented(lm(PrecVehVel ~ Time, data=df), seg.Z = ~Time,
psi = list(Time = df$Time[which(df$dspsvel != 0)]),
control = seg.control(seed=2)),
silent=TRUE)
}
# map function:
models8_101 <- by_veh28_101 %>%
mutate(segs = map(data, segf2),
segsp = map(data, segf2p))
对象by_veh28_101
包含2457 tibbles
。最后一步,使用map
函数,需要16分钟才能完成。有没有办法让这更快?
答案 0 :(得分:4)
您可以使用future_map
功能代替map
。
此功能来自包furrr
,是map
系列的并行选项。以下是该软件包README的链接。
由于您的代码问题无法重现,因此我无法在map
和future_map
函数之间准备基准。
具有future_map
功能的代码如下:
library(tidyverse)
library(segmented)
library(furrr)
# Data frame stuff....
# Your functions....
# future_map function
# this distribute over the different cores of your computer
# You set a "plan" for how the code should run. The easiest is `multiprocess`
# On Mac this picks plan(multicore) and on Windows this picks plan(multisession)
plan(strategy = multiprocess)
models8_101 <- by_veh28_101 %>%
mutate(segs = future_map(data, segf2),
segsp = future_map(data, segf2p))