我正在使用Spark 1.5。
我有一个包含30个ID的列,我从数据库加载integers
:
val numsRDD = sqlContext
.table(constants.SOURCE_DB + "." + IDS)
.select("id")
.distinct
.map(row=>row.getInt(0))
这是numsRDD
:
numsRDD.collect.foreach(println(_))
643761
30673603
30736590
30773400
30832624
31104189
31598495
31723487
32776244
32801792
32879386
32981901
33469224
34213505
34709608
37136455
37260344
37471301
37573190
37578690
37582274
37600896
37608984
37616677
37618105
37644500
37647770
37648497
37720353
37741608
接下来,我想为那些ids
生成所有 3 的组合,然后将每个组合保存为格式的元组:< tripletID: String, triplet: Array(Int)>
并将其转换为< em> dataframe ,我的工作如下:
// |combinationsDF| = 4060 combinations
val combinationsDF = sc
.parallelize(numsRDD
.collect
.combinations(3)
.toArray
.map(row => row.sorted)
.map(row => (
List(row(0), row(1), row(2)).mkString(","),
List(row(0), row(1), row(2)).toArray)))
.toDF("tripletID","triplet")
一旦我这样做,我会尝试打印一些combinationsDF
的内容,以确保一切都是应有的。所以我试试这个:
combinationsDF.show
返回:
+--------------------+--------------------+
| tripletID| triplet|
+--------------------+--------------------+
|,37136455,3758227...|[32776244, 371364...|
|,37136455,3761667...|[32776244, 371364...|
|,32776244,3713645...|[31723487, 327762...|
|,37136455,3757869...|[32776244, 371364...|
|,32776244,3713645...|[31598495, 327762...|
|,37136455,3760089...|[32776244, 371364...|
|,37136455,3764849...|[32776244, 371364...|
|,37136455,3764450...|[32776244, 371364...|
|,37136455,3747130...|[32776244, 371364...|
|,32981901,3713645...|[32776244, 329819...|
|,37136455,3761810...|[32776244, 371364...|
|,34213505,3713645...|[32776244, 342135...|
|,37136455,3726034...|[32776244, 371364...|
|,37136455,3772035...|[32776244, 371364...|
|2776244,37136455...|[643761, 32776244...|
|,37136455,3764777...|[32776244, 371364...|
|,37136455,3760898...|[32776244, 371364...|
|,32879386,3713645...|[32776244, 328793...|
|,32776244,3713645...|[31104189, 327762...|
|,32776244,3713645...|[30736590, 327762...|
+--------------------+--------------------+
only showing top 20 rows
很明显,每个tripletID
的第一个元素都缺失了。所以,我要100%确定我使用take(20)
如下:
combinationsDF.take(20).foreach(println(_))
返回更详细的表示形式如下:
[,37136455,37582274,WrappedArray(32776244, 37136455, 37582274)]
[,37136455,37616677,WrappedArray(32776244, 37136455, 37616677)]
[,32776244,37136455,WrappedArray(31723487, 32776244, 37136455)]
[,37136455,37578690,WrappedArray(32776244, 37136455, 37578690)]
[,32776244,37136455,WrappedArray(31598495, 32776244, 37136455)]
[,37136455,37600896,WrappedArray(32776244, 37136455, 37600896)]
[,37136455,37648497,WrappedArray(32776244, 37136455, 37648497)]
[,37136455,37644500,WrappedArray(32776244, 37136455, 37644500)]
[,37136455,37471301,WrappedArray(32776244, 37136455, 37471301)]
[,32981901,37136455,WrappedArray(32776244, 32981901, 37136455)]
[,37136455,37618105,WrappedArray(32776244, 37136455, 37618105)]
[,34213505,37136455,WrappedArray(32776244, 34213505, 37136455)]
[,37136455,37260344,WrappedArray(32776244, 37136455, 37260344)]
[,37136455,37720353,WrappedArray(32776244, 37136455, 37720353)]
[2776244,37136455,WrappedArray(643761, 32776244, 37136455)]
[,37136455,37647770,WrappedArray(32776244, 37136455, 37647770)]
[,37136455,37608984,WrappedArray(32776244, 37136455, 37608984)]
[,32879386,37136455,WrappedArray(32776244, 32879386, 37136455)]
[,32776244,37136455,WrappedArray(31104189, 32776244, 37136455)]
[,32776244,37136455,WrappedArray(30736590, 32776244, 37136455)]
所以现在我确信来自tripletID
的第一个id无论出于何种原因都被弃用了。但是,如果我尝试使用collect
代替take(20)
:
combinationsDF.collect.foreach(println(_))
一切又恢复正常(!!!):
[32776244,37136455,37582274,WrappedArray(32776244, 37136455, 37582274)]
[32776244,37136455,37616677,WrappedArray(32776244, 37136455, 37616677)]
[31723487,32776244,37136455,WrappedArray(31723487, 32776244, 37136455)]
[32776244,37136455,37578690,WrappedArray(32776244, 37136455, 37578690)]
[31598495,32776244,37136455,WrappedArray(31598495, 32776244, 37136455)]
[32776244,37136455,37600896,WrappedArray(32776244, 37136455, 37600896)]
[32776244,37136455,37648497,WrappedArray(32776244, 37136455, 37648497)]
[32776244,37136455,37644500,WrappedArray(32776244, 37136455, 37644500)]
[32776244,37136455,37471301,WrappedArray(32776244, 37136455, 37471301)]
[32776244,32981901,37136455,WrappedArray(32776244, 32981901, 37136455)]
[32776244,37136455,37618105,WrappedArray(32776244, 37136455, 37618105)]
[32776244,34213505,37136455,WrappedArray(32776244, 34213505, 37136455)]
[32776244,37136455,37260344,WrappedArray(32776244, 37136455, 37260344)]
[32776244,37136455,37720353,WrappedArray(32776244, 37136455, 37720353)]
[643761,32776244,37136455,WrappedArray(643761, 32776244, 37136455)]
[32776244,37136455,37647770,WrappedArray(32776244, 37136455, 37647770)]
[32776244,37136455,37608984,WrappedArray(32776244, 37136455, 37608984)]
[32776244,32879386,37136455,WrappedArray(32776244, 32879386, 37136455)]
[31104189,32776244,37136455,WrappedArray(31104189, 32776244, 37136455)]
[30736590,32776244,37136455,WrappedArray(30736590, 32776244, 37136455)]
...
1。在我将parallelize
组合数组放入RDD之前,我已经详尽地查询了这些步骤,一切正常。
2.我在parallelize
应用之后立即打印输出,再次一切正常。
3.问题似乎与将 numsRDD转换为DF 有关,尽管我付出了最大的努力,但我无法处理它。
4.我也无法使用相同的代码片段重现模拟数据的问题。
首先:是什么导致了这个问题? 第二:如何解决?
答案 0 :(得分:2)
我会检查你原来的numsRDD
,看起来你可能有一个空字符串或空值。这对我有用:
scala> val numsRDD = sc.parallelize(0 to 30)
numsRDD: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[0] at parallelize at <console>:27
scala> :pa
// Entering paste mode (ctrl-D to finish)
val combinationsDF = sc
.parallelize(numsRDD
.collect
.combinations(3)
.toArray
.map(row => row.sorted)
.map(row => (
List(row(0), row(1), row(2)).mkString(","),
List(row(0), row(1), row(2)).toArray)))
.toDF("tripletID","triplet")
// Exiting paste mode, now interpreting.
combinationsDF: org.apache.spark.sql.DataFrame = [tripletID: string, triplet: array<int>]
scala> combinationsDF.show
+---------+----------+
|tripletID| triplet|
+---------+----------+
| 0,1,2| [0, 1, 2]|
| 0,1,3| [0, 1, 3]|
| 0,1,4| [0, 1, 4]|
| 0,1,5| [0, 1, 5]|
| 0,1,6| [0, 1, 6]|
| 0,1,7| [0, 1, 7]|
| 0,1,8| [0, 1, 8]|
| 0,1,9| [0, 1, 9]|
| 0,1,10|[0, 1, 10]|
| 0,1,11|[0, 1, 11]|
| 0,1,12|[0, 1, 12]|
| 0,1,13|[0, 1, 13]|
| 0,1,14|[0, 1, 14]|
| 0,1,15|[0, 1, 15]|
| 0,1,16|[0, 1, 16]|
| 0,1,17|[0, 1, 17]|
| 0,1,18|[0, 1, 18]|
| 0,1,19|[0, 1, 19]|
| 0,1,20|[0, 1, 20]|
| 0,1,21|[0, 1, 21]|
+---------+----------+
only showing top 20 rows
我唯一能想到的是mkString
没有像你期望的那样工作。尝试这个字符串插值(也不需要重新创建List
):
val combinationsDF = sc
.parallelize(numsRDD
.collect
.combinations(3)
.toArray
.map(row => row.sorted)
.map{case List(a,b,c) => (
s"$a,$b,$c",
Array(a,b,c))}
.toDF("tripletID","triplet")
scala> combinationsDF.show
+---------+----------+
|tripletID| triplet|
+---------+----------+
| 0,1,2| [0, 1, 2]|
| 0,1,3| [0, 1, 3]|
| 0,1,4| [0, 1, 4]|
| 0,1,5| [0, 1, 5]|
| 0,1,6| [0, 1, 6]|
| 0,1,7| [0, 1, 7]|
| 0,1,8| [0, 1, 8]|
| 0,1,9| [0, 1, 9]|
| 0,1,10|[0, 1, 10]|
| 0,1,11|[0, 1, 11]|
| 0,1,12|[0, 1, 12]|
| 0,1,13|[0, 1, 13]|
| 0,1,14|[0, 1, 14]|
| 0,1,15|[0, 1, 15]|
| 0,1,16|[0, 1, 16]|
| 0,1,17|[0, 1, 17]|
| 0,1,18|[0, 1, 18]|
| 0,1,19|[0, 1, 19]|
| 0,1,20|[0, 1, 20]|
| 0,1,21|[0, 1, 21]|
+---------+----------+
only showing top 20 rows
答案 1 :(得分:-2)
e.g。
df.show()
Out[11]:
+----+-------+
| age| name|
+----+-------+
|null|Michael|
| 30| Andy|
| 19| Justin|
+----+-------+
df.collect()显示内容和结构/ metadata.e.g。
df.collect()
Out[11]:
[Row(age=None, name=u'Michael'),
Row(age=30, name=u'Andy'),
Row(age=19, name=u'Justin')]
e.g。仅查看数据帧的前两行
df.take(2)
Out[13]:
[Row(age=None, name=u'Michael'), Row(age=30, name=u'Andy')]