我可以保留df10&的名称吗? df20相同并在运行func(df)后单独调用它们,甚至重命名它们?
df = pd.DataFrame( {
'A': ['d','d','d','d','d','d','g','g','g','g','g','g','k','k','k','k','k','k'],
'B': [5,5,6,4,5,6,-6,7,7,6,-7,7,-8,7,-6,6,-7,50],
'C': [1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2],
'S': [2012,2013,2014,2015,2016,2012,2012,2014,2015,2016,2012,2013,2012,2013,2014,2015,2016,2014]
} );
df10 = (df.B + df.C).groupby([df.A, df.S]).agg(['sum','size']).unstack(fill_value=0)
df20 = (df['B'] - df['C']).groupby([df.A, df.S]).agg(['sum','size']).unstack(fill_value=0)
def func(df):
df1 = df.groupby(level=0, axis=1).sum()
new_cols= list(zip(df1.columns.get_level_values(0),['total'] * len(df.columns)))
df1.columns = pd.MultiIndex.from_tuples(new_cols)
df2 = pd.concat([df1,df], axis=1).sort_index(axis=1).sort_index(axis=1, level=1)
df2.columns = ['_'.join((col[0], str(col[1]))) for col in df2.columns]
df2.columns = df2.columns.str.replace('sum_','')
df2.columns = df2.columns.str.replace('size_','T')
return df2
dfs = []
for df in [df10, df20]:
dfs.append(func(df))
dfs
答案 0 :(得分:1)
您可以使用DataFrames
存储和列表来创建dfs
中存储的names = ['a','b']
dfs = {names[i]:func(df) for i,df in enumerate([df10, df20])}
print (dfs)
{'a': T2012 2012 T2013 2013 T2014 2014 T2015 2015 T2016 2016 Ttotal \
A
d 2 13 1 6 1 7 1 5 1 6 6
g 2 -11 1 8 1 8 1 8 1 7 6
k 1 -6 1 9 2 48 1 8 1 -5 6
total
A
d 37
g 20
k 54 , 'b': T2012 2012 T2013 2013 T2014 2014 T2015 2015 T2016 2016 Ttotal \
A
d 2 9 1 4 1 5 1 3 1 4 6
g 2 -15 1 6 1 6 1 6 1 5 6
k 1 -10 1 5 2 40 1 4 1 -9 6
total
A
d 25
g 8
k 30 }
新名称:
print (dfs['a'])
T2012 2012 T2013 2013 T2014 2014 T2015 2015 T2016 2016 Ttotal \
A
d 2 13 1 6 1 7 1 5 1 6 6
g 2 -11 1 8 1 8 1 8 1 7 6
k 1 -6 1 9 2 48 1 8 1 -5 6
total
A
d 37
g 20
k 54
print (dfs['b'])
T2012 2012 T2013 2013 T2014 2014 T2015 2015 T2016 2016 Ttotal \
A
d 2 9 1 4 1 5 1 3 1 4 6
g 2 -15 1 6 1 6 1 6 1 5 6
k 1 -10 1 5 2 40 1 4 1 -9 6
total
A
d 25
g 8
k 30
DataFrames
但如果需要func
的相同名称,您可以将函数df10 = func(df10)
df20 = func(df20)
print (df10)
T2012 2012 T2013 2013 T2014 2014 T2015 2015 T2016 2016 Ttotal \
A
d 2 13 1 6 1 7 1 5 1 6 6
g 2 -11 1 8 1 8 1 8 1 7 6
k 1 -6 1 9 2 48 1 8 1 -5 6
total
A
d 37
g 20
k 54
print (df20)
T2012 2012 T2013 2013 T2014 2014 T2015 2015 T2016 2016 Ttotal \
A
d 2 9 1 4 1 5 1 3 1 4 6
g 2 -15 1 6 1 6 1 6 1 5 6
k 1 -10 1 5 2 40 1 4 1 -9 6
total
A
d 25
g 8
k 30
的输出分配给相同的变量:
dfa = func(df10)
dfb = func(df20)
您也可以分配新变量:
{{1}}