如何为自己的数据实现tensorflow的next_batch

时间:2016-12-06 11:44:47

标签: python numpy neural-network tensorflow classification

tensorflow MNIST tutorial中,mnist.train.next_batch(100)功能非常方便。我现在正试图自己实现一个简单的分类。我的训练数据是一个numpy数组。我如何为自己的数据实现类似的功能,以便为我提供下一批产品?

sess = tf.InteractiveSession()
tf.global_variables_initializer().run()
Xtr, Ytr = loadData()
for it in range(1000):
    batch_x = Xtr.next_batch(100)
    batch_y = Ytr.next_batch(100)

6 个答案:

答案 0 :(得分:24)

您发布的链接说:"我们收到了#34;批次"来自我们的训练集" 的100个随机数据点。在我的示例中,我使用了一个全局函数(不是您示例中的方法),因此语法会有所不同。

在我的函数中,您需要传递所需的样本数和数据数组。

这是正确的代码,可确保样本具有正确的标签:

import numpy as np

def next_batch(num, data, labels):
    '''
    Return a total of `num` random samples and labels. 
    '''
    idx = np.arange(0 , len(data))
    np.random.shuffle(idx)
    idx = idx[:num]
    data_shuffle = [data[ i] for i in idx]
    labels_shuffle = [labels[ i] for i in idx]

    return np.asarray(data_shuffle), np.asarray(labels_shuffle)

Xtr, Ytr = np.arange(0, 10), np.arange(0, 100).reshape(10, 10)
print(Xtr)
print(Ytr)

Xtr, Ytr = next_batch(5, Xtr, Ytr)
print('\n5 random samples')
print(Xtr)
print(Ytr)

演示运行:

[0 1 2 3 4 5 6 7 8 9]
[[ 0  1  2  3  4  5  6  7  8  9]
 [10 11 12 13 14 15 16 17 18 19]
 [20 21 22 23 24 25 26 27 28 29]
 [30 31 32 33 34 35 36 37 38 39]
 [40 41 42 43 44 45 46 47 48 49]
 [50 51 52 53 54 55 56 57 58 59]
 [60 61 62 63 64 65 66 67 68 69]
 [70 71 72 73 74 75 76 77 78 79]
 [80 81 82 83 84 85 86 87 88 89]
 [90 91 92 93 94 95 96 97 98 99]]

5 random samples
[9 1 5 6 7]
[[90 91 92 93 94 95 96 97 98 99]
 [10 11 12 13 14 15 16 17 18 19]
 [50 51 52 53 54 55 56 57 58 59]
 [60 61 62 63 64 65 66 67 68 69]
 [70 71 72 73 74 75 76 77 78 79]]

答案 1 :(得分:11)

为了对每个小批量进行洗牌和取样,还应考虑是否在当前时期内选择了样本。这是一个使用上述答案中的数据的实现。

import numpy as np 

class Dataset:

def __init__(self,data):
    self._index_in_epoch = 0
    self._epochs_completed = 0
    self._data = data
    self._num_examples = data.shape[0]
    pass


@property
def data(self):
    return self._data

def next_batch(self,batch_size,shuffle = True):
    start = self._index_in_epoch
    if start == 0 and self._epochs_completed == 0:
        idx = np.arange(0, self._num_examples)  # get all possible indexes
        np.random.shuffle(idx)  # shuffle indexe
        self._data = self.data[idx]  # get list of `num` random samples

    # go to the next batch
    if start + batch_size > self._num_examples:
        self._epochs_completed += 1
        rest_num_examples = self._num_examples - start
        data_rest_part = self.data[start:self._num_examples]
        idx0 = np.arange(0, self._num_examples)  # get all possible indexes
        np.random.shuffle(idx0)  # shuffle indexes
        self._data = self.data[idx0]  # get list of `num` random samples

        start = 0
        self._index_in_epoch = batch_size - rest_num_examples #avoid the case where the #sample != integar times of batch_size
        end =  self._index_in_epoch  
        data_new_part =  self._data[start:end]  
        return np.concatenate((data_rest_part, data_new_part), axis=0)
    else:
        self._index_in_epoch += batch_size
        end = self._index_in_epoch
        return self._data[start:end]

dataset = Dataset(np.arange(0, 10))
for i in range(10):
    print(dataset.next_batch(5))

输出是:

[2 8 6 3 4]
[1 5 9 0 7]
[1 7 3 0 8]
[2 6 5 9 4]
[1 0 4 8 3]
[7 6 2 9 5]
[9 5 4 6 2]
[0 1 8 7 3]
[9 7 8 1 6]
[3 5 2 4 0]

第一个和第二个(第3个和第4个......)迷你批次对应一个整个时代..

答案 2 :(得分:1)

我使用Anaconda和Jupyter。 在Jupyter,如果你运行?mnist,你会得到: File: c:\programdata\anaconda3\lib\site-packages\tensorflow\contrib\learn\python\learn\datasets\base.py Docstring: Datasets(train, validation, test)

在文件夹datesets中,您会发现mnist.py包含所有方法,包括next_batch

答案 3 :(得分:1)

上面标出的答案是我通过该算法尝试的算法,但没有得到结果,所以我在kaggle上进行搜索,发现确实很棒的算法效果很好。最好的结果试试这个。 在下面的算法中,“全局变量”采用您在上面声明的输入中读取数据集。**

epochs_completed = 0
index_in_epoch = 0
num_examples = X_train.shape[0]
    # for splitting out batches of data
def next_batch(batch_size):

    global X_train
    global y_train
    global index_in_epoch
    global epochs_completed

    start = index_in_epoch
    index_in_epoch += batch_size

    # when all trainig data have been already used, it is reorder randomly    
    if index_in_epoch > num_examples:
        # finished epoch
        epochs_completed += 1
        # shuffle the data
        perm = np.arange(num_examples)
        np.random.shuffle(perm)
        X_train = X_train[perm]
        y_train = y_train[perm]
        # start next epoch
        start = 0
        index_in_epoch = batch_size
        assert batch_size <= num_examples
    end = index_in_epoch
    return X_train[start:end], y_train[start:end]

答案 4 :(得分:0)

如果您不希望在tensorflow会话运行中出现形状不匹配错误 然后使用以下函数代替上面第一个解决方案(https://stackoverflow.com/a/40995666/7748451) -

中提供的函数
def next_batch(num, data, labels):

    '''
    Return a total of `num` random samples and labels. 
    '''
    idx = np.arange(0 , len(data))
    np.random.shuffle(idx)
    idx = idx[:num]
    data_shuffle = data[idx]
    labels_shuffle = labels[idx]
    labels_shuffle = np.asarray(labels_shuffle.values.reshape(len(labels_shuffle), 1))

    return data_shuffle, labels_shuffle

答案 5 :(得分:0)

另一个实现方式:

from typing import Tuple
import numpy as np

class BatchMaker(object):
    def __init__(self, feat: np.array, lab: np.array) -> None:
        if len(feat) != len(lab):
            raise ValueError("Expected feat and lab to have the same number of samples")
        self.feat = feat
        self.lab = lab
        self.indexes = np.arange(len(feat))
        np.random.shuffle(self.indexes)
        self.pos = 0

    # "BatchMaker, BatchMaker, make me a batch..."
    def next_batch(self, batch_size: int) -> Tuple[np.array, np.array]:
        if self.pos + batch_size > len(self.feat):
            np.random.shuffle(self.indexes)
            self.pos = 0
        batch_indexes = self.indexes[self.pos: self.pos + batch_size]
        self.pos += batch_size
        return self.feat[batch_indexes], self.lab[batch_indexes]