我想像scikit-learn示例silhouette_analysis一样计算silhouette_score。
from sklearn.feature_extraction.text import TfidfVectorizer
tfidf_vectorizer = TfidfVectorizer(use_idf=True)
sampleText = []
sampleText.append("Some text for document clustering")
tfidf_matrix = tfidf_vectorizer.fit_transform(sampleText)
如何将我的tfidf_matrix转换为这样的事情:
import matplotlib.cm as cm
from sklearn.metrics import silhouette_samples, silhouette_score
import matplotlib.pyplot as plt
for num_clusters in range(2,6):
# Create a subplot with 1 row and 2 columns
fig, (ax1, ax2) = plt.subplots(1, 2)
fig.set_size_inches(18, 7)
# The 1st subplot is the silhouette plot
# The silhouette coefficient can range from -1, 1 but in this example all
# lie within [-0.1, 1]
ax1.set_xlim([-0.1, 1])
# The (n_clusters+1)*10 is for inserting blank space between silhouette
# plots of individual clusters, to demarcate them clearly.
ax1.set_ylim([0, len(tfidf_matrix) + (num_clusters + 1) * 10])
km = KMeans(n_clusters=num_clusters,
n_init=10, # number of iterations with different seeds
random_state=1 # fixes the seed
)
cluster_labels = km.fit_predict(tfidf_matrix)
# The silhouette_score gives the average value for all the samples.
# This gives a perspective into the density and separation of the formed
# clusters
silhouette_avg = silhouette_score(tfidf_matrix, cluster_labels)
答案 0 :(得分:0)
tf-idf是多维的,必须减少到两个维度。这可以通过将tf-idf减少到具有最高方差的两个特征来完成。我使用PCA来减少tf-idf。完整的例子:
git push --tags