在R中得到图的二次方程项

时间:2010-11-04 14:46:32

标签: excel r formula quadratic

我需要找到我在R中绘制的图的二次方程项。 当我在excel中执行此操作时,该术语出现在图表上的文本框中,但我不确定如何将其移动到单元格以供后续使用(以应用于需要校准的值)或实际上如何在R中请求它。如果它在R中是可召唤的,那么它是否可以作为一个对象来保存以进行未来的计算?

这似乎应该是R中的直接请求,但我找不到任何类似的问题。非常感谢任何人可以提供的任何帮助。

4 个答案:

答案 0 :(得分:7)

所有答案都提供了您想要做的事情的各个方面,但到目前为止还没有将它们整合在一起。让我们考虑Tom Liptrot的答案示例:

fit <- lm(speed ~ dist + I(dist^2), cars)

这给了我们一个拟合的线性模型,其中变量dist具有二次曲线。我们使用coef()提取器函数提取模型系数:

> coef(fit)
 (Intercept)         dist    I(dist^2) 
 5.143960960  0.327454437 -0.001528367

所以你的拟合方程(由于打印而变圆):

\ hat {speed} = 5.143960960 +(0.327454437 * dist)+( - 0.001528367 * dist ^ 2)

(其中\ hat {speed}是响应,速度的拟合值。

如果你想将这个拟合方程应用于某些数据,那么我们可以编写自己的函数来实现它:

myfun <- function(newdist, model) {
    coefs <- coef(model)
    res <- coefs[1] + (coefs[2] * newdist) + (coefs[3] * newdist^2)
    return(res)
}

我们可以像这样应用这个函数:

> myfun(c(21,3,4,5,78,34,23,54), fit)
[1] 11.346494  6.112569  6.429325  6.743024 21.386822 14.510619 11.866907
[8] 18.369782

对于一些新的距离值(dist),这似乎是你想从Q做的事情。但是,在R中我们通常不做这样的事情,因为,为什么要用户必须知道如何从可以安装在R?

中的所有不同类型的模型中形成拟合值或预测值

在R中,我们使用标准方法和提取器函数。在这种情况下,如果您要应用“等式”(Excel)显示所有数据以获得此回归的拟合值,则在R中我们将使用fitted()函数:

> fitted(fit)
        1         2         3         4         5         6         7         8 
 5.792756  8.265669  6.429325 11.608229  9.991970  8.265669 10.542950 12.624600 
        9        10        11        12        13        14        15        16 
14.510619 10.268988 13.114445  9.428763 11.081703 12.122528 13.114445 12.624600 
       17        18        19        20        21        22        23        24 
14.510619 14.510619 16.972840 12.624600 14.951557 19.289106 21.558767 11.081703 
       25        26        27        28        29        30        31        32 
12.624600 18.369782 14.057455 15.796751 14.057455 15.796751 17.695765 16.201008 
       33        34        35        36        37        38        39        40 
18.688450 21.202650 21.865976 14.951557 16.972840 20.343693 14.057455 17.340416 
       41        42        43        44        45        46        47        48 
18.038887 18.688450 19.840853 20.098387 18.369782 20.576773 22.333670 22.378377 
       49        50 
22.430008 21.93513

如果您想将模型方程应用于一些不适合模型的新数据值,那么我们需要从模型中获得预测。这是使用predict()函数完成的。使用上面插入myfun的距离,我们就是以更加以R为中心的方式来实现的:

> newDists <- data.frame(dist = c(21,3,4,5,78,34,23,54))
> newDists
  dist
1   21
2    3
3    4
4    5
5   78
6   34
7   23
8   54
> predict(fit, newdata = newDists)
        1         2         3         4         5         6         7         8 
11.346494  6.112569  6.429325  6.743024 21.386822 14.510619 11.866907 18.369782

首先,我们使用名为"dist"的组件创建一个新数据框,其中包含我们希望从模型中获取预测的新距离。值得注意的是,我们在此数据框中包含一个变量,该变量与我们创建拟合模型时使用的变量具有相同的名称。这个新数据框必须包含用于拟合模型的所有变量,但在这种情况下,我们只有一个变量dist。另请注意,我们不需要包含有关dist ^ 2的任何内容。 R将为我们处理。

然后我们使用predict()函数,给它我们的拟合模型,并提供刚创建为参数'newdata'的新数据框,为我们提供新的预测值,与我们手工完成的值相匹配早。

我掩饰的是predict()fitted()实际上是一整套功能。有lm()模型的版本,适用于glm()模型等。它们被称为泛型函数,带有方法(如果您喜欢的版本)几种不同类型的物体。用户通常只需记住使用fitted()predict()等,而R负责使用您提供的拟合模型类型的正确方法。以下是基础R中可用于fitted()泛型函数的一些方法:

> methods(fitted)
[1] fitted.default*       fitted.isoreg*        fitted.nls*          
[4] fitted.smooth.spline*

   Non-visible functions are asterisked

根据您加载的其他软件包,您可能会得到更多。 *只是意味着你不能直接引用这些函数,你必须使用fitted()并且R计算出哪些函数要使用。请注意,lm()个对象没有方法。这种类型的对象不需要特殊的方法,因此default方法将被使用并且是合适的。

答案 1 :(得分:5)

你可以在lum的forumla中添加一个二次项,以获得你所追求的拟合。你需要在你想要平方的术语周围使用I(),如下例所示:

plot(speed ~ dist, cars)

fit1 = lm(speed ~ dist, cars) #fits a linear model
abline(fit1) #puts line on plot
fit2 = lm(speed ~ I(dist^2) + dist, cars) #fits a model with a quadratic term
fit2line = predict(fit2, data.frame(dist = -10:130))
lines(-10:130 ,fit2line, col=2) #puts line on plot

从这个用途中获取系数:

coef(fit2)

答案 2 :(得分:1)

我认为在Excel中不可能,因为它们只提供函数来获得线性回归的系数(SLOPEINTERCEPTLINEST)或指数({{} {1}},GROWTH),尽管使用Visual Basic可能会有更多的运气。

对于R,您可以使用LOGEST函数提取模型系数:

coef

答案 3 :(得分:0)

我猜您的意思是在Excel或R中绘制X与Y值,在Excel中使用“添加趋势线”功能。在R中,您可以使用lm function为数据拟合线性函数,这也为您提供“r平方”项(请参阅linked page中的示例)。