我正在尝试使用python中的LightFM库创建冷启动建议。 https://github.com/lyst/lightfm
这适用于协同过滤,没有用户和项目功能,即:
from lightfm import LightFM
interaction_matrix
<322139x42715 sparse matrix of type '<type 'numpy.float32'>'
with 4571208 stored elements in COOrdinate format>
model = LightFM(no_components=50)
model.fit(interaction_matrix, epochs=1, num_threads=32)
predictions = model.predict(12, np.arange(250), num_threads=32)
这使得预测很好。但是,当我添加:
members_features, item_features
(<322139x2790 sparse matrix of type '<type 'numpy.float32'>'
with 19840665 stored elements in Compressed Sparse Row format>,
<42715x2790 sparse matrix of type '<type 'numpy.float32'>'
with 355006 stored elements in Compressed Sparse Row format>)
model2 = LightFM(no_components=100, loss='warp', item_alpha=0.001, user_alpha=0.001)
model2.fit(interaction_matrix, user_features=members_features, item_features=item_features, sample_weight=None, \
verbose=True, epochs=2, num_threads=32)
我为用户和项目嵌入获得了Nan's。
model2.item_embeddings
array([[ nan, nan, nan, ..., nan, nan, nan],
[ nan, nan, nan, ..., nan, nan, nan],
[ nan, nan, nan, ..., nan, nan, nan],
...,
[ nan, nan, nan, ..., nan, nan, nan],
[ nan, nan, nan, ..., nan, nan, nan],
[ nan, nan, nan, ..., nan, nan, nan]], dtype=float32)
答案 0 :(得分:0)
您应该尝试更新到LightFM 1.12(通过pip install lightfm==1.12
)。此版本修复了许多可能导致您看到的结果的数值不稳定问题。
如果您对血腥细节感兴趣,可以查看Github issue。