tl; dr:我在我的模型中输入一个单词,我应该得到一个类似单词的列表及其相关的相似度量。我收到一个错误:中止(核心转储)。
我的目标是根据输入词的特征向量确定哪些词与输入词相似。我的模特已经训练过了。我加载它并调用两个函数:
def main(argv=None):
model = NVDM(args)
sess_saver = tf.train.Saver()
sess = tf.Session()
init = tf.initialize_all_variables()
sess.run(init)
loaded = load_for_similar(sess, sess_saver) #my function
wm = word_match(sess, loaded[0], loaded[1], "bottle", loaded[2], loaded[3], topN=5)
我的问题是我无法打印出类似的词和相关的相似度量。我试过(主要):
sess.run(wm)
wm[0].eval(session=sess)
print(wm)
所有这些都给了我错误:
F tensorflow/core/kernels/strided_slice_op.cc:316] Check failed: tmp.CopyFrom(input.Slice(begin[0], end[0]), final_shape)
Aborted (core dumped)
这告诉我我没有正确运行会话。我做错了什么?
有关功能的详细信息,以防万一:
功能' load_for_similar'恢复我的模型中的解码器的权重和偏差(变分自动编码器),并对它们进行归一化。它还会反转词汇表中的键和值的顺序以供以后使用:
def load_for_similar(sess, saver_obj):
saver_obj.restore(sess, "./CA_checkpoints/saved_model.ckpt")
vocab_file = '/path/to/vocab.pkl'
t1 = loader_object(vocab_file)
v1 = t1.get_vocab()
v1_rev = {k:v for v, k in v1.iteritems()}
decoder_mat = tf.get_collection(tf.GraphKeys.VARIABLES, scope='decoder')[0]
decoder_bias = tf.get_collection(tf.GraphKeys.VARIABLES, scope='decoder')[1]
return (find_norm(decoder_mat), find_norm(decoder_bias), v1, v1_rev)
为了找到相似的单词,我传递了规范化的权重矩阵并偏向一个新函数,以及我的单词(vec)的特征向量:
def find_similar(sess, Weights, vec, bias):
dists = tf.add(tf.reduce_sum(tf.mul(Weights, vec)), bias)
best = argsort(sess, dists, reverse=True)
dist_sort = tf.nn.top_k(dists, k=dists.get_shape().as_list()[0], sorted=True).values
return dist_sort, best
最后,我想匹配最接近我提供的单词的单词" bottle":
def word_match(sess, norm_mat , norm_bias, word_ , vocab, vocab_inverse , topN = 10):
idx = vocab[word_]
similarity_meas , indexes = find_similar(sess, norm_mat , norm_mat[idx], norm_bias)
words = tf.gather(vocab_inverse.keys(), indexes[:topN])
return (words, similarity_meas[:topN])
编辑:回应mrry的评论,这是模型(我希望这是你想要的?)。此代码依赖于utils.py,一个单独的实用程序文件。我也会把它包括在内。请注意,此代码主要基于Yishu Miao's和Sarath Nair's。
class NVDM(object):
""" Neural Variational Document Model -- BOW VAE.
"""
def __init__(self,
vocab_size=15000, #was 2000
n_hidden=500,
n_topic=50,
n_sample=1,
learning_rate=1e-5,
batch_size=100, #was 64
non_linearity=tf.nn.tanh):
self.vocab_size = vocab_size
self.n_hidden = n_hidden
self.n_topic = n_topic
self.n_sample = n_sample
self.non_linearity = non_linearity
self.learning_rate = learning_rate/batch_size #CA
self.batch_size = batch_size
self.x = tf.placeholder(tf.float32, [None, vocab_size], name='input')
self.mask = tf.placeholder(tf.float32, [None], name='mask') # mask paddings
# encoder
with tf.variable_scope('encoder'):
self.enc_vec = utils.mlp(self.x, [self.n_hidden, self.n_hidden])
self.mean = utils.linear(self.enc_vec, self.n_topic, scope='mean')
self.logsigm = utils.linear(self.enc_vec,
self.n_topic,
bias_start_zero=True,
matrix_start_zero=False,
scope='logsigm')
self.kld = -0.5 * tf.reduce_sum(1 - tf.square(self.mean) + 2 * self.logsigm - tf.exp(2 * self.logsigm), 1)
self.kld = self.mask*self.kld # mask paddings
with tf.variable_scope('decoder'):
if self.n_sample ==1: # single sample
p1 = tf.cast(tf.reduce_sum(self.mask), tf.int32) #needed for random normal generation
eps = tf.random_normal((p1, self.n_topic), 0, 1)
doc_vec = tf.mul(tf.exp(self.logsigm), eps) + self.mean
logits = tf.nn.log_softmax(utils.linear(doc_vec, self.vocab_size, scope='projection'))
self.recons_loss = -tf.reduce_sum(tf.mul(logits, self.x), 1)
# multiple samples
else:
eps = tf.random_normal((self.n_sample*batch_size, self.n_topic), 0, 1)
eps_list = tf.split(0, self.n_sample, eps)
recons_loss_list = []
for i in xrange(self.n_sample):
if i > 0: tf.get_variable_scope().reuse_variables()
curr_eps = eps_list[i]
doc_vec = tf.mul(tf.exp(self.logsigm), curr_eps) + self.mean
logits = tf.nn.log_softmax(utils.linear(doc_vec, self.vocab_size, scope='projection'))
recons_loss_list.append(-tf.reduce_sum(tf.mul(logits, self.x), 1))
self.recons_loss = tf.add_n(recons_loss_list) / self.n_sample
self.objective = self.recons_loss + self.kld
optimizer = tf.train.AdamOptimizer(learning_rate=self.learning_rate)
fullvars = tf.trainable_variables()
enc_vars = utils.variable_parser(fullvars, 'encoder')
dec_vars = utils.variable_parser(fullvars, 'decoder')
enc_grads = tf.gradients(self.objective, enc_vars)
dec_grads = tf.gradients(self.objective, dec_vars)
self.optim_enc = optimizer.apply_gradients(zip(enc_grads, enc_vars))
self.optim_dec = optimizer.apply_gradients(zip(dec_grads, dec_vars))
def minibatch_bow(it1, Instance1, n_samples, batch_size, used_ints = set()):
available = set(np.arange(n_samples)) - used_ints #
if len(available) < batch_size:
indices = np.array(list(available))
else:
indices = np.random.choice(tuple(available), batch_size, replace=False)
used = used_ints
mb = itemgetter(*indices)(it1)
batch_xs = Instance1._bag_of_words(mb, vocab_size=15000)
batch_flattened = np.ravel(batch_xs)
index_positions = np.where(batch_flattened > 0)[0]
return (batch_xs, index_positions, set(indices)) #batch_xs[0] is the bag of words; batch_xs[1] is the 0/1 word used/not;
def train(sess, model, train_file, vocab_file, saver_obj, training_epochs, alternate_epochs, batch_size):
Instance1 = testchunk_Nov23.testLoader(train_file, vocab_file)
data_set = Instance1.get_batch(batch_size) #get all minibatches of size 100
n_samples = Instance1.num_reviews()
train_batches = list(data_set) #this is an itertools.chain object
it1_train = list(itertools.chain(*train_batches)) #length is 732,356. This is all the reviews.atch_size
if len(it1_train) % batch_size != 0:
total_batch = int(len(it1_train)/batch_size) + 1
else:
total_batch = int(len(it1_train)/batch_size)
trainfilesave = "train_ELBO_and_perplexity_Dec1.txt"
#Training
train_time = time.time()
for epoch in range(training_epochs):
for switch in xrange(0, 2):
if switch == 0:
optim = model.optim_dec
print_mode = 'updating decoder'
else:
optim = model.optim_enc
print_mode = 'updating encoder'
with open(trainfilesave, 'w') as f:
for i in xrange(alternate_epochs):
loss_sum = 0.0
kld_sum = 0.0
word_count = 0
used_indices = set()
for idx_batch in range(total_batch): #train_batches:
mb = minibatch_bow(it1_train, Instance1, n_samples, batch_size, used_ints=used_indices)
print('minibatch', idx_batch)
used_indices.update(mb[2])
num_mb = np.ones(mb[0][0].shape[0])
input_feed = {model.x.name: mb[0][0], model.mask: num_mb}
_, (loss, kld) = sess.run((optim,[model.objective, model.kld]) , input_feed)
loss_sum += np.sum(loss)
utils.py文件:
def linear(inputs,
output_size,
no_bias=False,
bias_start_zero=False,
matrix_start_zero=False,
scope=None):
"""Define a linear connection."""
with tf.variable_scope(scope or 'Linear'):
if matrix_start_zero:
matrix_initializer = tf.constant_initializer(0)
else:
matrix_initializer = None
if bias_start_zero:
bias_initializer = tf.constant_initializer(0)
else:
bias_initializer = None
input_size = inputs.get_shape()[1].value
matrix = tf.get_variable('Matrix', [input_size, output_size],
initializer=matrix_initializer)
bias_term = tf.get_variable('Bias', [output_size],
initializer=bias_initializer)
output = tf.matmul(inputs, matrix)
if not no_bias:
output = output + bias_term
return output
def mlp(inputs,
mlp_hidden=[],
mlp_nonlinearity=tf.nn.tanh,
scope=None):
"""Define an MLP."""
with tf.variable_scope(scope or 'Linear'):
mlp_layer = len(mlp_hidden)
res = inputs
for l in xrange(mlp_layer):
res = mlp_nonlinearity(linear(res, mlp_hidden[l], scope='l'+str(l)))
return res