我正在尝试运行while循环,直到在终端上按下enter,但据我所知,循环在cin.get()处停止,直到收到某些内容。有没有办法让终端输入可选并重新运行while循环? 这是代码中的循环,如果我取出它运行良好的cin.get()部分,我就是无法阻止它。
while (true) {
// In each iteration of our main loop, we run the Myo event loop for a set number of milliseconds.
hub.run(1);
// Extract first timestamp from Myo (string casted as a number)
if (tstart == 0){
stringstream myStream(collector.stampTime);
myStream >> tstart;
}
// Extracting samples from DataCollector
std::array<float, 3> acceData = collector.acceSamples;
std::array<float, 3> gyroData = collector.gyroSamples;
std::array<float, 3> oriData = collector.oriSamples;
std::array<int8_t, 8> emgData = collector.emgSamples;
for (int i = 0; i < emgData.size(); i++){
if (i < 3) {
// Accelerometer samples
acce[i] = acceData[i];
pAcce[i] = acce[i];
// Gyroscope samples
gyro[i] = gyroData[i];
pGyro[i] = gyro[i];
// Orientation samples
ori[i] = oriData[i];
pOri[i] = ori[i];
}
// EMG samples
emg[i] = emgData[i];
pEMG[i] = emg[i];
}
/*
* Plot the result
*/
engPutVariable(ep, "Acce", Acce);
engPutVariable(ep, "Gyro", Gyro);
engPutVariable(ep, "Ori", Ori);
engPutVariable(ep, "EMG", EMG);
engEvalString(ep,"EMG_gather");
// Extract timestamps from Myo (string casted as a number) and compute elapsed time
stringstream myStream(collector.stampTime);
myStream >> tend;
elapsedTime = (tend - tstart)/1000000;
// Keep track of how many runs Myo has performed
x++;
if (x % 30 == 0){
std::cout << x << endl;
}
if (cin.get() == '\n')
break;
else if (cin.get() == '')
continue;
}
答案 0 :(得分:0)
这取决于您希望输入的复杂程度,但根据您发布的内容,您也可以
像这样使用std::signal
函数:
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.colors
class FixPointNormalize(matplotlib.colors.Normalize):
"""
Inspired by https://stackoverflow.com/questions/20144529/shifted-colorbar-matplotlib
Subclassing Normalize to obtain a colormap with a fixpoint
somewhere in the middle of the colormap.
This may be useful for a `terrain` map, to set the "sea level"
to a color in the blue/turquise range.
"""
def __init__(self, vmin=None, vmax=None, sealevel=0, col_val = 0.21875, clip=False):
# sealevel is the fix point of the colormap (in data units)
self.sealevel = sealevel
# col_val is the color value in the range [0,1] that should represent the sealevel.
self.col_val = col_val
matplotlib.colors.Normalize.__init__(self, vmin, vmax, clip)
def __call__(self, value, clip=None):
x, y = [self.vmin, self.sealevel, self.vmax], [0, self.col_val, 1]
return np.ma.masked_array(np.interp(value, x, y))
# Combine the lower and upper range of the terrain colormap with a gap in the middle
# to let the coastline appear more prominently.
# inspired by https://stackoverflow.com/questions/31051488/combining-two-matplotlib-colormaps
colors_undersea = plt.cm.terrain(np.linspace(0, 0.17, 56))
colors_land = plt.cm.terrain(np.linspace(0.25, 1, 200))
# combine them and build a new colormap
colors = np.vstack((colors_undersea, colors_land))
cut_terrain_map = matplotlib.colors.LinearSegmentedColormap.from_list('cut_terrain', colors)
# invent some data (height in meters relative to sea level)
data = np.linspace(-1000,2400,15**2).reshape((15,15))
# plot example data
fig, ax = plt.subplots(nrows = 2, ncols=3, figsize=(11,6) )
plt.subplots_adjust(left=0.08, right=0.95, bottom=0.05, top=0.92, hspace = 0.28, wspace = 0.15)
plt.figtext(.5, 0.95, "Using 'terrain' and FixedPointNormalize", ha="center", size=14)
norm = FixPointNormalize(sealevel=0, vmax=3400)
im = ax[0,0].imshow(data+1000, norm=norm, cmap=plt.cm.terrain)
fig.colorbar(im, ax=ax[0,0])
norm2 = FixPointNormalize(sealevel=0, vmax=3400)
im2 = ax[0,1].imshow(data, norm=norm2, cmap=plt.cm.terrain)
fig.colorbar(im2, ax=ax[0,1])
norm3 = FixPointNormalize(sealevel=0, vmax=0)
im3 = ax[0,2].imshow(data-2400.1, norm=norm3, cmap=plt.cm.terrain)
fig.colorbar(im3, ax=ax[0,2])
plt.figtext(.5, 0.46, "Using custom cut map and FixedPointNormalize (adding hard edge between land and sea)", ha="center", size=14)
norm4 = FixPointNormalize(sealevel=0, vmax=3400)
im4 = ax[1,0].imshow(data+1000, norm=norm4, cmap=cut_terrain_map)
fig.colorbar(im4, ax=ax[1,0])
norm5 = FixPointNormalize(sealevel=0, vmax=3400)
im5 = ax[1,1].imshow(data, norm=norm5, cmap=cut_terrain_map)
cbar = fig.colorbar(im5, ax=ax[1,1])
norm6 = FixPointNormalize(sealevel=0, vmax=0)
im6 = ax[1,2].imshow(data-2400.1, norm=norm6, cmap=cut_terrain_map)
fig.colorbar(im6, ax=ax[1,2])
for i, name in enumerate(["land only", "coast line", "sea only"]):
for j in range(2):
ax[j,i].text(0.96,0.96,name, ha="right", va="top", transform=ax[j,i].transAxes, color="w" )
plt.show()
这将一直运行直到用户按下#include <iostream>
#include <csignal>
namespace {
volatile std::sig_atomic_t m_stop;
}
static void app_msg_pump(int sig)
{
if (sig == SIGINT || sig == SIGTERM) {
m_stop = sig;
}
}
int main(int argc, char* argv[])
{
m_stop = 0;
std::signal(SIGINT, &app_msg_pump); // catch signal interrupt request
std::signal(SIGTERM, &app_msg_pump); // catch signal terminate request
while (m_stop == 0) {
// your loop code here
}
std::cout << "Stopping.." << std::endl;
// your clean up code here
return 0;
}
(通常的控制台信号中断键处理程序),您可以修改上面的代码以忽略按键,并只处理用户请求中断的事实。
希望可以提供帮助。