分组超过2列并在计算中使用后续组的值

时间:2016-12-01 16:30:56

标签: r function conditional-statements grouping summarize

假设我有一个包含3列的df,group1,group2&变量

set.seed(1)
group1 = c(rep(1,5),rep(2,5),rep(3,5),rep(4,5))
group2 = c("A","B","C","D","B","C","C","B","C","A","B","D")
variable = c(as.integer(rnorm(20,2)**3))
df=data.frame(group1, group2, variable)

我添加了专栏' min1'其中说明了' group1'中b的值是否为也存在于group1(x-1)中。副Versa与plus1。在总数据框下方:

   group1 group2 variable min1 plus1
1       1      A        3    0     0
2       1      B       11    0     1
3       1      C        2    0     1
4       2      D       47    0     1
5       2      B       13    1     1
6       2      C        2    1     1
7       3      C       16    1     0
8       3      B       21    1     1
9       3      C       18    1     0
10      4      A        5    0     0
11      4      B       44    1     0
12      4      D       14    0     0

现在我想对变量进行计算,例如max()和sum()(还有一些更奇特的计算),但不仅仅是在他们自己的group1&中的所有值上。 group2组合,但包括组之前(或之后)的值。 min1示例如下所示。

  group1_min1 group2_min1 sum_min1 max_min1
1           2           B       24       13
2           2           C        4        2
3           3           C       36       18
4           3           B       34       21
5           4           B       65       44

注意,对于group1_min1(3),group2_min1(C)使用三个值:行6,7和9(2,16& 18)。

我尝试使用group_by并在dplyr中进行汇总,例如:

group_by(group1, group2) %>% 
summarize_each(funs(sum, max))

编辑:

我找到了一个将总和添加到原始df的解决方案:

sum_min1 = c()
j=0
for (j in 1:(length(df$group1))){
  if (df[j,"min1"] == 0){sum_min1 = c(sum_min1,0)} else {
    sum_min1 = c(sum_min1,(sum(df[which((df[,"group1"] == df[j,"group1"] | df[,"group1"] == (df[j,"group1"]-1)) & df[,"group2"]==(df[j,"group2"])),"variable"])))
  }
}
df = cbind(df,sum_min1)

这提供了输出:

   group1 group2 variable min1 plus1 sum_min1
1         1    A        3    0     0       0
2         1    B       11    0     1       0
3         1    C        2    0     1       0
4         2    D       47    0     0       0
5         2    B       13    1     1      24
6         2    C        2    1     1       4
7         3    C       16    1     0      36
8         3    B       21    1     1      34
9         3    C       18    1     0      36
10        4    A        5    0     0       0
11        4    B       44    1     0      65
12        4    D       14    0     0       0

然而,这似乎是一种非常粗糙的方式,可能需要很长时间才能完成大数据集,实际上还有多个变量和多个功能。它也可能是一个问题,因为我想做一些用户定义的函数,包括所有值的for循环。

有更优雅的方法吗?

很抱歉我做错了什么,我是R和StackOverflow的新手而不是母语人士。

1 个答案:

答案 0 :(得分:0)

# Data
set.seed(1)
group1 = c(rep(1,3),rep(2,3),rep(3,3),rep(4,3))
group2 = c("A","B","C","D","B","C","C","B","C","A","B","D")
variable = c(as.integer(rnorm(12,2)**3))
df=data.frame(group1, group2, variable)

第一部分 -

df$min1 <- sapply(seq(nrow(df)), function(x)
          {
           if(df[x, "group1"] == 1){0} else {
            max(df[x, "group2"] %in% df[df$group1 == df[x,"group1"] - 1,"group2"])}
          })

df$plus1 <- sapply(seq(nrow(df)), function(x)
          {
           if(df[x, "group1"] == max(df$group1){0} else {
            max(df[x, "group2"] %in% df[df$group1 == df[x,"group1"] + 1,"group2"])}
          })

第二部分

df$sum_min1 <- sapply(seq(nrow(df)), function(x)
                {
                 if(df[x, "group1"] == 1){0}else{
                  sum(df[df$group1 == df[x,"group1"] & 
                         df$group2 == df[x,"group2"],"variable"],
                      df[df$group1 == df[x,"group1"] - 1 &
                         df$group2 == df[x,"group2"],"variable"])}
                 })