使用QueueLinearFloodFillAlgorithm在着色中留下空白

时间:2016-11-30 18:19:39

标签: android algorithm flood-fill

我正在尝试在android中实现泛洪填充算法。它工作得很慢,所以我根据这个链接尝试了队列线性泛洪填充算法

How to use flood fill algorithm in Android?

它工作得很快,但部分没有完全着色。在这张照片中,边缘上留有一些白色空间。

enter image description here 我使用了以下代码:

public class QueueLinearFloodFiller {

    protected Bitmap image = null;
    protected int[] tolerance = new int[] { 0, 0, 0 };
    protected int width = 0;
    protected int height = 0;
    protected int[] pixels = null;
    protected int fillColor = 0;
    protected int[] startColor = new int[] { 0, 0, 0 };
    protected boolean[] pixelsChecked;
    protected Queue<FloodFillRange> ranges;

    // Construct using an image and a copy will be made to fill into,
    // Construct with BufferedImage and flood fill will write directly to
    // provided BufferedImage
    public QueueLinearFloodFiller(Bitmap img) {
        copyImage(img);
    }

    public QueueLinearFloodFiller(Bitmap img, int targetColor, int newColor) {
        useImage(img);

        setFillColor(newColor);
        setTargetColor(targetColor);
    }

    public void setTargetColor(int targetColor) {
        startColor[0] = Color.red(targetColor);
        startColor[1] = Color.green(targetColor);
        startColor[2] = Color.blue(targetColor);
    }

    public int getFillColor() {
        return fillColor;
    }

    public void setFillColor(int value) {
        fillColor = value;
    }

    public int[] getTolerance() {
        return tolerance;
    }

    public void setTolerance(int[] value) {
        tolerance = value;
    }

    public void setTolerance(int value) {
        tolerance = new int[] { value, value, value };
    }

    public Bitmap getImage() {
        return image;
    }

    public void copyImage(Bitmap img) {
        // Copy data from provided Image to a BufferedImage to write flood fill
        // to, use getImage to retrieve
        // cache data in member variables to decrease overhead of property calls
        width = img.getWidth();
        height = img.getHeight();

        image = Bitmap.createBitmap(width, height, Bitmap.Config.RGB_565);
        Canvas canvas = new Canvas(image);
        canvas.drawBitmap(img, 0, 0, null);

        pixels = new int[width * height];

        image.getPixels(pixels, 0, width, 1, 1, width - 1, height - 1);
    }

    public void useImage(Bitmap img) {
        // Use a pre-existing provided BufferedImage and write directly to it
        // cache data in member variables to decrease overhead of property calls
        width = img.getWidth();
        height = img.getHeight();
        image = img;

        pixels = new int[width * height];

        image.getPixels(pixels, 0, width, 1, 1, width - 1, height - 1);
    }

    protected void prepare() {
        // Called before starting flood-fill
        pixelsChecked = new boolean[pixels.length];
        ranges = new LinkedList<FloodFillRange>();
    }

    // Fills the specified point on the bitmap with the currently selected fill
    // color.
    // int x, int y: The starting coords for the fill
    public void floodFill(int x, int y) {
        // Setup
        prepare();

        if (startColor[0] == 0) {
            // ***Get starting color.
            int startPixel = pixels[(width * y) + x];
            startColor[0] = (startPixel >> 16) & 0xff;
            startColor[1] = (startPixel >> 8) & 0xff;
            startColor[2] = startPixel & 0xff;
        }

        // ***Do first call to floodfill.
        LinearFill(x, y);

        // ***Call floodfill routine while floodfill ranges still exist on the
        // queue
        FloodFillRange range;

        while (ranges.size() > 0) {
            // **Get Next Range Off the Queue
            range = ranges.remove();

            // **Check Above and Below Each Pixel in the Floodfill Range
            int downPxIdx = (width * (range.Y + 1)) + range.startX;
            int upPxIdx = (width * (range.Y - 1)) + range.startX;
            int upY = range.Y - 1;// so we can pass the y coord by ref
            int downY = range.Y + 1;

            for (int i = range.startX; i <= range.endX; i++) {
                // *Start Fill Upwards
                // if we're not above the top of the bitmap and the pixel above
                // this one is within the color tolerance
                if (range.Y > 0 && (!pixelsChecked[upPxIdx])
                        && CheckPixel(upPxIdx))
                    LinearFill(i, upY);

                // *Start Fill Downwards
                // if we're not below the bottom of the bitmap and the pixel
                // below this one is within the color tolerance
                if (range.Y < (height - 1) && (!pixelsChecked[downPxIdx])
                        && CheckPixel(downPxIdx))
                    LinearFill(i, downY);

                downPxIdx++;
                upPxIdx++;
            }
        }

        image.setPixels(pixels, 0, width, 1, 1, width - 1, height - 1);
    }

    // Finds the furthermost left and right boundaries of the fill area
    // on a given y coordinate, starting from a given x coordinate, filling as
    // it goes.
    // Adds the resulting horizontal range to the queue of floodfill ranges,
    // to be processed in the main loop.

    // int x, int y: The starting coords
    protected void LinearFill(int x, int y) {
        // ***Find Left Edge of Color Area
        int lFillLoc = x; // the location to check/fill on the left
        int pxIdx = (width * y) + x;

        while (true) {
            // **fill with the color
            pixels[pxIdx] = fillColor;

            // **indicate that this pixel has already been checked and filled
            pixelsChecked[pxIdx] = true;

            // **de-increment
            lFillLoc--; // de-increment counter
            pxIdx--; // de-increment pixel index

            // **exit loop if we're at edge of bitmap or color area
            if (lFillLoc < 0 || (pixelsChecked[pxIdx]) || !CheckPixel(pxIdx)) {
                break;
            }
        }

        lFillLoc++;

        // ***Find Right Edge of Color Area
        int rFillLoc = x; // the location to check/fill on the left

        pxIdx = (width * y) + x;

        while (true) {
            // **fill with the color
            pixels[pxIdx] = fillColor;

            // **indicate that this pixel has already been checked and filled
            pixelsChecked[pxIdx] = true;

            // **increment
            rFillLoc++; // increment counter
            pxIdx++; // increment pixel index

            // **exit loop if we're at edge of bitmap or color area
            if (rFillLoc >= width || pixelsChecked[pxIdx] || !CheckPixel(pxIdx)) {
                break;
            }
        }

        rFillLoc--;

        // add range to queue
        FloodFillRange r = new FloodFillRange(lFillLoc, rFillLoc, y);

        ranges.offer(r);
    }

    // Sees if a pixel is within the color tolerance range.
    protected boolean CheckPixel(int px) {
        int red = (pixels[px] >>> 16) & 0xff;
        int green = (pixels[px] >>> 8) & 0xff;
        int blue = pixels[px] & 0xff;

        return (red >= (startColor[0] - tolerance[0])
                && red <= (startColor[0] + tolerance[0])
                && green >= (startColor[1] - tolerance[1])
                && green <= (startColor[1] + tolerance[1])
                && blue >= (startColor[2] - tolerance[2]) && blue <= (startColor[2] + tolerance[2]));
    }

    // Represents a linear range to be filled and branched from.
    protected class FloodFillRange {
        public int startX;
        public int endX;
        public int Y;

        public FloodFillRange(int startX, int endX, int y) {
            this.startX = startX;
            this.endX = endX;
            this.Y = y;
        }
    }
}

我尝试增加公差值,但仍留有一些空白区域,如果我增加了很多值,那么整个图像就会变色。 请帮帮我!

1 个答案:

答案 0 :(得分:1)

白色/灰色像素是抗锯齿的结果,用于平滑线条的边缘。为了避免这些瑕疵,你可以在创建图像时不使用抗锯齿,否则你可以使用两步公差:传播泛光填充的公差值较低,较高的公差值用于着色像素但不传播填写任何进一步。

然而,这两种方法都会破坏图像中的抗锯齿效果,从而降低图像质量。另一种方法是对图像进行另一次传递并处理与填充相邻的像素(pixelsChecked为假,但至少有一个邻居public boolean isFilled(int x, int y) { if((x < 0) || (y < 0) || (x >= width) || (y >= height)) return false; return pixelsChecked[(width * y) + x]; } public boolean isNeighbourFilled(int x, int y) { // return true if at least one neighbour is filled: for(int offsetY = -1; offsetY <= 1; offsetY++) { for(int offsetX = -1; offsetX <= 1; offsetX++) { if((offsetX != 0) && (offsetY != 0) && isFilled(x + offsetX, y + offsetY)) return true; } } return false; } public void antiAliasFillOutline() { for(int y = 0; y < height; y++) { for(int x = 0; x < width; x++) { // if pixel is not filled by neighbour is then it's on the border if(!isFilled(x, y) && isNeighbourFilled(x, y)) { // compute an anti-aliased pixel value: antiAliasPixel(x, y); } } } } public void antiAliasPixel(int x, int y) { int pixel = pixels[(width * y) + x]; int red = (pixel >>> 16) & 0xff; int green = (pixel >>> 8) & 0xff; int blue = pixel & 0xff; int fillred = (fillColor >>> 16) & 0xff; int fillgreen = (fillColor >>> 8) & 0xff; int fillblue = fillColor & 0xff; // work out how much to anti-alias from 0 to 256: int amount = ((red + green + blue) * 256) / (startColor[0] + startColor[1] + startColor[2]); if(amount > 256) amount = 256; red = (fillred * amount) >> 8; green = (fillgreen * amount) >> 8; blue = (fillblue * amount) >> 8; pixels[(width * y) + x] = 0xff000000 | (red << 16) | (green << 8) | blue; } 为真)并计算消除锯齿的像素值,假设像素针对黑线消除锯齿

antiAliasFillOutline()

在洪水填充结束时拨打pixelsChecked

你可以通过内联一些函数调用并删除public void antiAliasFillOutlineFaster() { for(int y = 1; y < height - 1; y++) { int i = (y * width) + 1; for(int x = 1; x < width - 1; x++) { // if pixel is not filled by neighbour is then it's on the border if(!pixelsChecked[i] && (pixelsChecked[i-1] || pixelsChecked[i+1] || pixelsChecked[i-width-1] || pixelsChecked[i-width] || pixelsChecked[i-width+1] || pixelsChecked[i+width-1] || pixelsChecked[i+width] || pixelsChecked[i+width+1])) { // compute an anti-aliased pixel value: antiAliasPixel(x, y); } i++; } } } 上的边界检查来加快速度(以牺牲可读性为代价):

fillred

您也可以尝试检查4个相邻像素,而不是8个邻居,包括对角线。此外,(startColor[0] + startColor[1] + startColor[2])等和209.93.122.164 - - [01/Dec/2016:01:09:21 +0000] "GET / HTTP/1.1" 200 352 "-" "Mozilla/5.0 (Windows NT 6.3; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/54.0.2840.99 Safari/537.36 OPR/41.0.2353.69" 209.93.122.164 - - [01/Dec/2016:01:09:38 +0000] "GET /test/h HTTP/1.1" 404 992 "-" "Mozilla/5.0 (Windows NT 6.3; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/54.0.2840.99 Safari/537.36 OPR/41.0.2353.69" 之类的值可以计算一次并存储在成员变量中。