在Hadoop教程中运行实现自定义输出格式

时间:2016-11-30 14:41:01

标签: java hadoop mapreduce

我想运行此tutorial中描述的代码,以便在Hadoop中自定义输出格式。更确切地说,本教程显示了两个java文件:

  1. WordCount:是字数统计java应用程序(类似于此link中MapReduce教程的WordCount v1.0)
  2. XMLOutputFormat:扩展FileOutputFormat并实现自定义输出的方法的java类。
  3. 好吧,我做的是采用MapReduce教程的WordCount v1.0(而不是使用教程中显示的WordCount)并添加驱动程序job.setOutputFormatClass(XMLOutputFormat.class);并以这种方式执行hadoop应用程序:

    /usr/local/hadoop/bin/hadoop com.sun.tools.javac.Main WordCount.java && jar cf wc.jar WordCount*.class && /usr/local/hadoop/bin/hadoop jar wc.jar WordCount /home/luis/Desktop/mytest/input/ ./output_folder

    注意:/home/luis/Desktop/mytest/input/./output_folder分别是输入和输出文件夹。

    不幸的是,终端显示以下错误:

    WordCount.java:57: error: cannot find symbol job.setOutputFormatClass(XMLOutputFormat.class); ^ symbol: class XMLOutputFormat location: class WordCount 1 error

    为什么呢? WordCount.java和XMLOutputFormat.java存储在同一个文件夹中。

    以下是我的代码。

    WordCount代码:

    import java.io.IOException;
    import java.util.StringTokenizer;
    
    import org.apache.hadoop.conf.Configuration;
    import org.apache.hadoop.fs.Path;
    import org.apache.hadoop.io.IntWritable;
    import org.apache.hadoop.io.Text;
    import org.apache.hadoop.mapreduce.Job;
    import org.apache.hadoop.mapreduce.Mapper;
    import org.apache.hadoop.mapreduce.Reducer;
    import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
    import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
    
    public class WordCount {
    
      public static class TokenizerMapper
           extends Mapper<Object, Text, Text, IntWritable>{
    
        private final static IntWritable one = new IntWritable(1);
        private Text word = new Text();
    
        public void map(Object key, Text value, Context context
                        ) throws IOException, InterruptedException {
          StringTokenizer itr = new StringTokenizer(value.toString());
          while (itr.hasMoreTokens()) {
            word.set(itr.nextToken());
            context.write(word, one);
          }
        }
      }
    
      public static class IntSumReducer
           extends Reducer<Text,IntWritable,Text,IntWritable> {
        private IntWritable result = new IntWritable();
    
        public void reduce(Text key, Iterable<IntWritable> values,
                           Context context
                           ) throws IOException, InterruptedException {
          int sum = 0;
          for (IntWritable val : values) {
            sum += val.get();
          }
          result.set(sum);
          context.write(key, result);
        }
      }
    
      public static void main(String[] args) throws Exception {
        Configuration conf = new Configuration();
        Job job = Job.getInstance(conf, "word count");
        job.setJarByClass(WordCount.class);
        job.setMapperClass(TokenizerMapper.class);
        job.setCombinerClass(IntSumReducer.class);
        job.setReducerClass(IntSumReducer.class);
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(IntWritable.class);
        job.setOutputFormatClass(XMLOutputFormat.class);
        FileInputFormat.addInputPath(job, new Path(args[0]));
        FileOutputFormat.setOutputPath(job, new Path(args[1]));
        System.exit(job.waitForCompletion(true) ? 0 : 1);
    
    
    
      }
    }
    

    XMLOutputFormat代码:

    import java.io.DataOutputStream; 
    import java.io.IOException;
    import org.apache.hadoop.fs.FSDataOutputStream;
    import org.apache.hadoop.fs.FileSystem;
    import org.apache.hadoop.fs.Path;
    import org.apache.hadoop.io.*;
    import org.apache.hadoop.mapreduce.RecordWriter;
    import org.apache.hadoop.mapreduce.TaskAttemptContext;
    import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
    
    public class XMLOutputFormat extends FileOutputFormat<Text, IntWritable> {
    
        protected static class XMLRecordWriter extends RecordWriter<Text, IntWritable> {
    
            private DataOutputStream out;
    
            public XMLRecordWriter(DataOutputStream out) throws IOException{
    
                this.out = out;
                out.writeBytes("<Output>\n");
    
            }
    
    
            private void writeStyle(String xml_tag,String tag_value) throws IOException {
    
                out.writeBytes("<"+xml_tag+">"+tag_value+"</"+xml_tag+">\n");
    
            }
    
            public synchronized void write(Text key, IntWritable value) throws IOException {
    
                out.writeBytes("<record>\n");
                this.writeStyle("key", key.toString());
                this.writeStyle("value", value.toString());
                out.writeBytes("</record>\n");
    
            }
    
            public synchronized void close(TaskAttemptContext job) throws IOException {
    
                try {
    
                    out.writeBytes("</Output>\n");
    
                } finally {
    
                    out.close();
    
                }
    
            }
    
        }
    
        public RecordWriter<Text, IntWritable> getRecordWriter(TaskAttemptContext job) throws IOException {
    
            String file_extension = ".xml";
            Path file = getDefaultWorkFile(job, file_extension);
            FileSystem fs = file.getFileSystem(job.getConfiguration());
            FSDataOutputStream fileOut = fs.create(file, false);
            return new XMLRecordWriter(fileOut);
    
        }
    
    }
    

2 个答案:

答案 0 :(得分:1)

您需要在package testpackage;班级

的开头添加WordCount

import testpackage.XMLOutputFormat;课程中

WordCount

因为它们位于同一目录中,所以并不意味着它们位于同一个包中。

答案 1 :(得分:1)

我们需要首先将XMLOutputFormat.jar文件添加到HADOOP_CLASSPATH,以便驱动程序代码找到它。并在-libjars选项中传递它以添加到地图的类路径并减少jvms。

export HADOOP_CLASSPATH=$HADOOP_CLASSPATH:/abc/xyz/XMLOutputFormat.jar

yarn jar wordcount.jar com.sample.test.Wordcount 
-libjars /path/to/XMLOutputFormat.jar 
/lab/mr/input /lab/output/output