我将我的DataFrame转换为添加从现有数据派生的列的方式似乎非常痛苦。起初,我考虑过使用apply,但我意识到这些额外的列取决于我原始DataFrame的某些方面(例如,MMR信息对于“ReplayID”是唯一的,以及团队是否赢得了“Is Winner”) 。我找到了前进的方法,但我想知道是否有更有效的方法来解决它。 DataFrames位于下方,我的代码位于以下位置:
转型前
转型后
import pandas as pd
import numpy as np
df = pd.read_csv('small.csv', index_col=False)
del df['Unnamed: 0']
replayGroup = df['MMR Before'].groupby([df['ReplayID'], df['Is Winner']])
summaryReplayGroup = replayGroup.agg([np.max, np.mean, np.min, np.std])
# i[0] -> Index
# i[1] -> ReplayID
# i[2] -> Is Auto Select
# i[3] -> HeroID
# i[4] -> Hero Level
# i[5] -> Is Winner
# i[6] -> MMR Before
maxMMR = []
meanMMR = []
minMMR = []
stdMMR = []
for i in df.itertuples():
key = (i[1], i[5])
maxMMR.append(summaryReplayGroup.loc[key]['amax'])
meanMMR.append(summaryReplayGroup.loc[key]['mean'])
minMMR.append(summaryReplayGroup.loc[key]['amin'])
stdMMR.append(summaryReplayGroup.loc[key]['std'])
df['Max Team MMR'] = maxMMR
df['Mean Team MMR'] = meanMMR
df['Min Team MMR'] = minMMR
df['Std Team MMR'] = stdMMR
# Negative diff indicates disadvantage
maxDiffMMR = []
meanDiffMMR = []
minDiffMMR = []
stdDiffMMR = []
# i[0] -> Index
# i[1] -> ReplayID
# i[2] -> Is Auto Select
# i[3] -> HeroID
# i[4] -> Hero Level
# i[5] -> Is Winner
# i[6] -> MMR Before
# i[7] -> Max Team MMR
# i[8] -> Mean Team MMR
# i[9] -> Min Team MMR
# i[10] -> Std Team MMR
for i in df.itertuples():
if i[5]:
opposite = 0
else:
opposite = 1
replayId = i[1]
oppTeamMaxMMR = df.loc[df['ReplayID'] == replayId].loc[df['Is Winner'] == opposite]['Max Team MMR'].mean()
teamMaxMMR = i[7]
diffMaxMMR = teamMaxMMR - oppTeamMaxMMR
oppTeamMeanMMR = df.loc[df['ReplayID'] == replayId].loc[df['Is Winner'] == opposite]['Mean Team MMR'].mean()
teamMeanMMR = i[8]
diffMeanMMR = teamMeanMMR - oppTeamMeanMMR
oppTeamMinMMR = df.loc[df['ReplayID'] == replayId].loc[df['Is Winner'] == opposite]['Min Team MMR'].mean()
teamMinMMR = i[8]
diffMinMMR = teamMinMMR - oppTeamMinMMR
oppTeamStdMMR = df.loc[df['ReplayID'] == replayId].loc[df['Is Winner'] == opposite]['Std Team MMR'].mean()
teamStdMMR = i[9]
diffStdMMR = teamStdMMR - oppTeamStdMMR
maxDiffMMR.append(diffMaxMMR)
meanDiffMMR.append(diffMeanMMR)
minDiffMMR.append(diffMinMMR)
stdDiffMMR.append(diffStdMMR)
df['Diff Max MMR'] = maxDiffMMR
df['Diff Mean MMR'] = meanDiffMMR
df['Diff Min MMR'] = minDiffMMR
df['Diff Std MMR'] = stdDiffMMR
感谢您花时间看看!
答案 0 :(得分:1)
df3
是您的最终数据框
funcs = {
'Max Team MMR': 'max',
'Mean Team MMR': 'mean',
'Min Team MMR': 'min',
'Std Team MMR': 'std'
}
idx_cols = ['ReplayID', 'Is Winner']
val_col = 'MMR Before'
df1 = df.set_index(idx_cols)
summaryReplayGroup = df1[val_col].groupby(level=idx_cols).agg(funcs)
df2 = df1.join(summaryReplayGroup)
diffs = summaryReplayGroup.unstack(idx_cols[0]).diff().dropna().squeeze().unstack(0)
diffs.columns = diffs.columns.str.replace(r'(.+) Team', r'Diff \1')
diffs = pd.concat([diffs, -diffs], keys=[1, 0])
df3 = df2.reset_index().join(diffs, on=idx_cols[::-1])
df3
结果
<强> 设置 强>
供其他人尝试
df = pd.DataFrame([
[57010496, 0, 36, 9, 0, 2589],
[57010496, 0, 20, 9, 1, 2354],
[57010496, 0, 14, 6, 1, 2314],
[57010496, 0, 12, 10, 0, 2288],
[57010496, 0, 39, 10, 0, 2486],
[57010496, 0, 19, 10, 1, 2292],
[57010496, 0, 27, 9, 1, 2385],
[57010496, 0, 11, 7, 0, 2183],
[57010496, 0, 24, 9, 1, 2471],
[57010496, 0, 35, 3, 0, 2166],
[57010518, 0, 22, 4, 0, 2582],
[57010518, 0, 29, 6, 1, 2470],
[57010518, 0, 36, 8, 1, 2590],
[57010518, 0, 31, 9, 1, 2313],
[57010518, 0, 19, 8, 1, 2159],
[57010518, 0, 13, 7, 0, 1996],
[57010518, 0, 7, 6, 1, 2441],
[57010518, 0, 21, 7, 0, 2220],
[57010518, 0, 42, 9, 0, 2465],
[57010518, 0, 18, 11, 0, 2392],
], columns=['ReplayID', 'Is Auto Select', 'HeroID',
'Hero Level', 'Is Winner', 'MMR Before'])