我有一个像
这样的PySpark数据帧 name city date
satya Mumbai 13/10/2016
satya Pune 02/11/2016
satya Mumbai 22/11/2016
satya Pune 29/11/2016
satya Delhi 30/11/2016
panda Delhi 29/11/2016
brata BBSR 28/11/2016
brata Goa 30/10/2016
brata Goa 30/10/2016
我需要为每个名字找出最喜欢的城市,并且逻辑是“如果城市在聚合'名称'+'城市'对上具有最大城市发生次数,则将城市视为优惠”。如果发现多个相同的事件,则考虑具有最新日期的城市。请解释一下:
d = df.groupby('name','city').count()
#name city count
brata Goa 2 #clear favourite
brata BBSR 1
panda Delhi 1 #as single so clear favourite
satya Pune 2 ##Confusion
satya Mumbai 2 ##confusion
satya Delhi 1 ##shd be discard as other cities having higher count than this city
#So get cities having max count
dd = d.groupby('name').agg(F.max('count').alias('count'))
ddd = dd.join(d,['name','count'],'left')
#name count city
brata 2 Goa #fav found
panda 1 Delhi #fav found
satya 2 Mumbai #can't say
satya 2 Pune #can't say
如果是用户'satya',我需要回到trx_history并获取具有equal_max计数的城市的最新日期I:e来自最后交易的'Mumbai'或'Pune'(最大日期),将该城市视为fav_city。在这种情况下,'Pune'为'29/11 / 2016'是最新/最大日期。
但我无法进一步完成如何完成任务。
请帮我逻辑或如果有更好的解决方案(更快/更紧凑的方式),请建议。谢谢。
答案 0 :(得分:4)
首先将日期转换为DateType
:
df_with_date = df.withColumn(
"date",
F.unix_timestamp("date", "dd/MM/yyyy").cast("timestamp").cast("date")
)
下一个groupBy
用户和城市,但扩展聚合如下:
df_agg = (df_with_date
.groupBy("name", "city")
.agg(F.count("city").alias("count"), F.max("date").alias("max_date")))
定义一个窗口:
from pyspark.sql.window import Window
w = Window().partitionBy("name").orderBy(F.desc("count"), F.desc("max_date"))
添加排名:
df_with_rank = (df_agg
.withColumn("rank", F.dense_rank().over(w)))
并过滤:
result = df_with_rank.where(F.col("rank") == 1)
您可以使用以下代码检测剩余的重复项:
import sys
final_w = Window().partitionBy("name").rowsBetween(-sys.maxsize, sys.maxsize)
result.withColumn("tie", F.count("*").over(final_w) != 1)
答案 1 :(得分:0)
d = df.groupby('name','city').count()
#name city count
brata Goa 2 #clear favourite
brata BBSR 1
panda Delhi 1 #as single so clear favourite
satya Pune 2 ##Confusion
satya Mumbai 2 ##confusion
satya Delhi 1 ##shd be discard as other cities having higher count than this city
#So get cities having max count
dd = d.groupby('name').count().sort(F.col('count').desc())
display(dd.take(1))