我试过Pandas:
import pandas as pd
df1 = pd.read_csv("csv1.csv")
df2 = pd.read_csv("csv2.csv")
my_keys = ["my_id", "my_subid"]
joined_df = pd.merge(df1, df1, on=my_keys)
joined_df.to_csv('out_df.csv', index=False)
经过一些研磨后出现内存错误。
接下来我尝试了Dask:
import dask.dataframe as dd
ddf1 = dd.read_csv("csv1.csv")
ddf2 = dd.read_csv("csv2.csv")
my_keys = ["my_id", "my_subid"]
joined_ddf = dd.merge(ddf1, ddf2, on=[my_keys])
joined_ddf.to_csv('out_ddf.csv', index=False)
我得到了相当神秘的内容:
'DataFrame' object has no attribute '_meta_nonempty'
可能会发生the doc次提及(由于昂贵的类型推断或Pandas中发生的事情,我猜错了)。但是在使用pandas中的类型手动设置元数据后,尝试from_pandas()
并且没有到达任何地方我认为Dask不是最佳选择。
下一步是什么?如果没有元数据技巧,最好使用sqlalchemy
和df.to_sql
将连接卸载到外部数据库中?由于连接中有多个索引,我远离普通csv
模块。
答案 0 :(得分:0)
跟进:倾销到Postgres是相当轻松的,虽然数据帧对我来说仍然看起来更干净。
import pandas as pd
from sqlalchemy import create_engine
df1 = pd.read_csv("csv1.csv")
df2 = pd.read_csv("csv2.csv")
engine = create_engine('postgresql://user:passwd@localhost:5432/mydb')
df1.to_sql('tableOne', engine)
df2.to_sql('tableTwo', engine)
query = """
SELECT *
FROM tableOne AS one
INNER JOIN tableTwo AS two
ON one.subject_id=two.subject_id
AND one.subject_sub_id=two.subject_sub_id
ORDER BY
one.subject_id,
one.subject_id
"""
df_result = pd.read_sql_query(query, engine)
df_result.to_sql('resultTable', engine)
df_result.to_csv("join_result.csv")
将来必须再次尝试Dask。