在我成功训练模型后,使用freeze_graph.py导出图形并使用bazel使用自定义/tensorflow/examples/label_image/main.cc构建它,我遇到了运行时错误。
Running model failed: Invalid argument: Matrix size-compatible: In[0]: [150,4],
In[1]: [600,36][[Node: local3/MatMul = MatMul[T=DT_FLOAT, transpose_a=false,
transpose_b=false, _device="/job:localhost/replica:0/task:0/cpu:0"(local3/Reshape,
local3/weights/read)]]
我很困惑,因为之前的所有步骤都已成功,我想知道[150,4]。我的batch_size是150,而4是类的数量,但为什么这个张量是我本地层的matmul操作的输入?此代码显示local3图层。 pool4层看起来像这样[150x10x10x6]
# local3
with tf.variable_scope('local3') as scope:
# Move everything into depth so we can perform a single matrix multiply.
reshape = tf.reshape(pool4, [FLAGS.batch_size, -1])
dim = reshape.get_shape()[1].value
weights = _variable_with_weight_decay('weights', shape=[dim, 36], stddev=0.04, wd=0.0004)
biases = _variable_on_cpu('biases', [36], tf.constant_initializer(0.1))
local3 = tf.nn.relu(tf.matmul(reshape, weights) + biases, name=scope.name)
对于模型,我使用了tensorflow的cifar10-tutorial作为起点。我的local3层几乎完全依赖于教程中的图层。
答案 0 :(得分:0)
好的,我不明白错误,但我通过修改local3-Layer
解决了这个问题# local3
with tf.variable_scope('local3') as scope:
# Move everything into depth so we can perform a single matrix multiply.
weights = _variable_with_weight_decay('weights', shape=[600, 36],
stddev=0.04, wd=0.0004)
biases = _variable_on_cpu('biases', [36], tf.constant_initializer(0.1))
dense1 = tf.reshape(pool4, [-1, weights.get_shape().as_list()[0]])
local3 = tf.nn.relu_layer(dense1, weights, biases) # Relu activation
_activation_summary(local3)
我在这个仓库中看到了本地层定义 https://github.com/HamedMP/tensorflow_export_cpp_example
我想知道tf.nn.relu_layer()方法,因为它似乎没有在API-Reference中记录。