是否可以在Haskell中编写此函数?

时间:2016-11-29 17:47:18

标签: haskell dependent-type

我正在学习依赖类型:在Haskell中我定义了规范类型

data Vec ∷ Type → Nat → Type where
  Nil  ∷ Vec a Z
  (:-) ∷ a → Vec a n → Vec a (S n)

并实现了Data.List中的大多数功能但是我不知道怎么写,如果可能的话,像

这样的功能
delete ∷ Eq a ⇒ a → Vec a n → Vec a (??)

因为结果的长度未知。我已经在Agda中找到了它并且以这种方式实现了

delete : {A : Set}{n : Nat}(x : A)(xs : Vec A (suc n)) → x ∈ xs → Vec A n
delete           .x (x ∷ xs)  hd    = xs
delete {A}{zero } _  ._      (tl ())
delete {A}{suc _} y (x ∷ xs) (tl p) = x ∷ delete y xs p

如果我理解正确delete,则定义时x的约束是xs的元素,在这种情况下,您只需移除x并从长度中减去1 。我可以在Haskell中写这样的东西吗?

1 个答案:

答案 0 :(得分:4)

问题是你需要一个Haskell目前缺乏的依赖量词。即(x : A)(xs : Vec A (suc n)) → ...部分不能直接表达。你可能可以用单身人物来做饭,但这会非常丑陋和复杂。

我只想定义

delete ∷ Eq a ⇒ a → Vec a (S n) → Maybe (Vec a n)

并且没关系。我还将参数的顺序更改为Vec,以便能够提供ApplicativeTraversable和其他实例。

实际上,没有。要定义delete,您只需提供要删除的索引:

{-# LANGUAGE GADTs, DataKinds #-}

data Nat = Z | S Nat

data Index n where
  IZ :: Index n
  IS :: Index n -> Index (S n)

data Vec n a where
  Nil  :: Vec Z a
  (:-) :: a -> Vec n a -> Vec (S n) a

delete :: Index n -> Vec (S n) a -> Vec n a
delete  IZ    (x :-  xs)       = xs
delete (IS n) (x :- (y :- xs)) = x :- delete n (y :- xs)

请注意,x ∈ xs只不过是一个丰富类型的索引。

以下是单身人士的解决方案:

{-# LANGUAGE GADTs, DataKinds, PolyKinds, KindSignatures, UndecidableInstances, TypeFamilies, RankNTypes, TypeOperators #-}

infixr 5 :-

data Nat = Z | S Nat

data family Sing (x :: a)

data instance Sing (b :: Bool) where
  STrue  :: Sing True
  SFalse :: Sing False

data instance Sing (n :: Nat) where
  SZ :: Sing Z
  SS :: Sing n -> Sing (S n)

type family (:==) (x :: a) (y :: a) :: Bool

class SEq a where
  (===) :: forall (x :: a) (y :: a). Sing x -> Sing y -> Sing (x :== y)

type instance Z   :== Z   = True
type instance S n :== Z   = False
type instance Z   :== S m = False
type instance S n :== S m = n :== m

instance SEq Nat where
  SZ   === SZ   = STrue
  SS n === SZ   = SFalse
  SZ   === SS m = SFalse
  SS n === SS m = n === m

data Vec xs a where
  Nil  :: Vec '[] a
  (:-) :: Sing x -> Vec xs a -> Vec (x ': xs) a

type family If b x y where
  If True  x y = x
  If False x y = y

type family Delete x xs where
  Delete x  '[]      = '[]
  Delete x (y ': xs) = If (x :== y) xs (y ': Delete x xs)

delete :: forall (x :: a) xs. SEq a => Sing x -> Vec xs a -> Vec (Delete x xs) a
delete x  Nil      = Nil
delete x (y :- xs) = case x === y of
  STrue  -> xs
  SFalse -> y :- delete x xs

test :: Vec '[S Z, S (S (S Z)), Z] Nat
test = delete (SS (SS SZ)) (SS SZ :- SS (SS (SS SZ)) :- SS (SS SZ) :- SZ :- Nil)

在这里,我们通过元素列表索引Vec,并将单例存储为向量元素。我们还定义了SEq这是一个类型类,它包含一个接收两个单例的方法,并返回它们提升的值相等的证明或它们的不等式。接下来,我们为列表定义类型系列Delete,与通常的delete类似,但是在类型级别。最后在实际的delete我们模式匹配x === y,从而揭示x是否等于y,这使得类型族计算。