我如何验证OpenCV给我的轮廓?

时间:2016-11-29 13:42:52

标签: python opencv

我跟着http://www.pyimagesearch.com/2016/10/03/bubble-sheet-multiple-choice-scanner-and-test-grader-using-omr-python-and-opencv/

现在我正在尝试实时制作此功能。我的最终目标是检测一个纯色圆圈,这看起来是一个好的开始。

我的崩溃:

~/py:.python test_grader.py
Traceback (most recent call last):
  File "test_grader.py", line 82, in <module>
    questionCnts = contours.sort_contours(questionCnts,
AttributeError: 'list' object has no attribute 'sort_contours'

questionCnts = contours.sort_contours(questionCnts,
    method="top-to-bottom")[0] << line 82 crashing

questionCnts定义为[] ..我不明白如何添加轮廓来添加此方法。

完整来源

from imutils.perspective import four_point_transform
from imutils import contours
import numpy as np
import argparse
import imutils
import cv2
import copy

cap = cv2.VideoCapture(0)

ANSWER_KEY = {0: 1, 1: 4, 2: 0, 3: 3, 4: 1}

while(True):
    ret, image = cap.read()
    clone = copy.copy(image)
    gray = cv2.cvtColor(clone, cv2.COLOR_BGR2GRAY)
    blurred = cv2.GaussianBlur(gray, (5, 5), 0)
    edged = cv2.Canny(blurred, 75, 200)
    ret, thresh = cv2.threshold(gray,127,255,1) #only black squares?

    contours, h = cv2.findContours(thresh,1,1) #was 2

# find contours in the edge map, then initialize
# the contour that corresponds to the document
    cnts = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
    # cnts = cv2.findContours(edged.copy(), cv2.RETR_EXTERNAL,
    # cv2.CHAIN_APPROX_SIMPLE)
    cnts = cnts[0] if imutils.is_cv2() else cnts[1]
    docCnt = None

        # ensure that at least one contour was found
    if len(cnts) > 0:
            # sort the contours according to their size in
            # descending order
        cnts = sorted(cnts, key=cv2.contourArea, reverse=True)

        # loop over the sorted contours
        for c in cnts:
            # approximate the contour
            peri = cv2.arcLength(c, True)
            approx = cv2.approxPolyDP(c, 0.02 * peri, True)

            # if our approximated contour has four points,
            # then we can assume we have found the paper
            if len(approx) == 4:
                docCnt = approx
                break

    # apply a four point perspective transform to both the
    # original image and grayscale image to obtain a top-down
    # birds eye view of the paper
    paper = four_point_transform(image, docCnt.reshape(4, 2))
    warped = four_point_transform(gray, docCnt.reshape(4, 2))

    # apply Otsu's thresholding method to binarize the warped
    # piece of paper
    thresh = cv2.threshold(warped, 0, 255,
        cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)[1]

    # find contours in the thresholded image, then initialize
    # the list of contours that correspond to questions
    cnts = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL,
        cv2.CHAIN_APPROX_SIMPLE)
    cnts = cnts[0] if imutils.is_cv2() else cnts[1]
    questionCnts = []

    # loop over the contours
    for c in cnts:
        # compute the bounding box of the contour, then use the
        # bounding box to derive the aspect ratio
        (x, y, w, h) = cv2.boundingRect(c)
        ar = w / float(h)

        # in order to label the contour as a question, region
        # should be sufficiently wide, sufficiently tall, and
        # have an aspect ratio approximately equal to 1
        if w >= 20 and h >= 20 and ar >= 0.9 and ar <= 1.1:
            questionCnts.append(c)

    # sort the question contours top-to-bottom, then initialize
    # the total number of correct answers
    questionCnts = contours.sort_contours(questionCnts,
        method="top-to-bottom")[0]
    correct = 0

    # each question has 5 possible answers, to loop over the
    # question in batches of 5
    for (q, i) in enumerate(np.arange(0, len(questionCnts), 5)):
        # sort the contours for the current question from
        # left to right, then initialize the index of the
        # bubbled answer
        cnts = contours.sort_contours(questionCnts[i:i + 5])[0]
        bubbled = None
        # loop over the sorted contours
        for (j, c) in enumerate(cnts):
            # construct a mask that reveals only the current
            # "bubble" for the question
            mask = np.zeros(thresh.shape, dtype="uint8")
            cv2.drawContours(mask, [c], -1, 255, -1)

            # apply the mask to the thresholded image, then
            # count the number of non-zero pixels in the
            # bubble area
            mask = cv2.bitwise_and(thresh, thresh, mask=mask)
            total = cv2.countNonZero(mask)

            # if the current total has a larger number of total
            # non-zero pixels, then we are examining the currently
            # bubbled-in answer
            if bubbled is None or total > bubbled[0]:
                bubbled = (total, j)
        # initialize the contour color and the index of the
        # *correct* answer
        color = (0, 0, 255)
        k = ANSWER_KEY[q]

        # check to see if the bubbled answer is correct
        if k == bubbled[1]:
            color = (0, 255, 0)
            correct += 1

        # draw the outline of the correct answer on the test
        cv2.drawContours(paper, [cnts[k]], -1, color, 3)
    # grab the test taker
    score = (correct / 5.0) * 100
    print("[INFO] score: {:.2f}%".format(score))
    cv2.putText(paper, "{:.2f}%".format(score), (10, 30),
        cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 0, 255), 2)
    cv2.imshow("Original", image)
    cv2.imshow("Exam", paper)
    if cv2.waitKey(1) & 0xFF == ord('q'):
        break

cv2.waitKey(0)

0 个答案:

没有答案