如何识别geom_smooth()使用的函数

时间:2016-11-28 21:56:34

标签: r ggplot2 spline smoothing gam

我想显示由geom_smooth()创建的情节,但是能够描述情节是如何创建的对我来说很重要。

我可以从文档中看到当n> = 1000时,使用gam作为平滑函数,但是我看不到使用了多少个结或者是什么函数生成了平滑。

示例:

library(ggplot2)

set.seed(12345)
n <- 3000
x1 <- seq(0, 4*pi,, n)
x2 <- runif(n)
x3 <- rnorm(n)
lp <- 2*sin(2* x1)+3*x2 + 3*x3
p <- 1/(1+exp(-lp))
y <- ifelse(p > 0.5, 1, 0)

df <- data.frame(x1, x2, x3, y)

# default plot
ggplot(df, aes(x = x1, y = y)) +
  geom_smooth() 

# specify method='gam'
# linear
ggplot(df, aes(x = x1, y = y)) +
  geom_smooth(method = 'gam') 

# specify gam and splines
# Shows non-linearity, but different from default
ggplot(df, aes(x = x1, y = y)) +
  geom_smooth(method = 'gam',
              method.args = list(family = "binomial"),
              formula = y ~ splines::ns(x, 7)) 

如果我想使用默认参数,有没有办法识别用于创建平滑的函数,以便我可以在分析的方法部分准确描述它?

variations of geom_smooth

1 个答案:

答案 0 :(得分:1)

我编写了一个函数,对StatSmooth的{​​{1}}函数中使用的步骤进行逆向工程,以获取用于绘图的实际方法/公式参数。

该函数期望ggplot对象作为其输入,并带有一个附加的可选参数来指定与setup_params对应的图层(如果未指定,则默认为1)。它以geom_smooth的形式返回文本字符串,并且将所有参数输出到控制台。

设想的用例有两个方面:

  1. 按原样将文本字符串添加为绘图标题/副标题/标题,以便在分析期间快速参考;
  2. 读取控制台打印输出,并在其他地方包含信息,或手动对其进行很好的格式化(例如,解析的plotmath表达式),以便在图形中进行注释,用于报告/演示。

功能

"Method: [method used], Formula: [formula used]"

演示

get.params <- function(plot, layer = 1){

  # return empty string if the specified geom layer doesn't use stat = "smooth"
  if(!"StatSmooth" %in% class(plot$layers[[layer]]$stat)){
    message("No smoothing function was used in this geom layer.")
    return("")
  }

  # recreate data used by this layer, in the format expected by StatSmooth
  # (this code chunk takes heavy reference from ggplot2:::ggplot_build.ggplot)
  layer.data <- plot$layers[[layer]]$layer_data(plot$data)
  layout <- ggplot2:::create_layout(plot$facet, plot$coordinates)
  data <- layout$setup(list(layer.data), plot$data, plot$plot_env)
  data[[1]] <- plot$layers[[layer]]$compute_aesthetics(data[[1]], plot)
  scales <- plot$scales
  data[[1]] <- ggplot2:::scales_transform_df(scales = scales, df = data[[1]])
  layout$train_position(data, scales$get_scales("x"), scales$get_scales("y"))
  data <- layout$map_position(data)[[1]]

  # set up stat params (e.g. replace "auto" with actual method / formula)
  stat.params <- suppressMessages(
    plot$layers[[layer]]$stat$setup_params(data = data, 
                                           params = plot$layers[[layer]]$stat_params)
    )

  # reverse the last step in setup_params; we don't need the actual function
  # for mgcv::gam, just the name
  if(identical(stat.params$method, mgcv::gam)) stat.params$method <- "gam"

  print(stat.params)

  return(paste0("Method: ", stat.params$method, ", Formula: ", deparse(stat.params$formula)))
}

plot