当我尝试使用我的数据集运行教程代码时,我得到了一个java.lang.AssertionError。你可以告诉我哪里出错了以及如何纠正它?
response <- "Churn"
predictors <- setdiff(names(churn), response)
hyper_params <- list(
hidden=list(c(32,32,32),c(64,64)),
input_dropout_ratio=c(0,0.05),
rate=c(0.01,0.02),
rate_annealing=c(1e-8,1e-7,1e-6)
)
grid <- h2o.grid(
algorithm="deeplearning",
grid_id="dl_grid",
training_frame=churn_training,
validation_frame=churn_validation,
x=predictors,
y=response,
epochs=1,
stopping_metric="AUTO", ## Changed this to AUTO for classification
stopping_tolerance=1e-2,
stopping_rounds=2,
score_validation_samples=10000,
score_duty_cycle=0.025,
adaptive_rate=F,
momentum_start=0.5,
momentum_stable=0.9,
momentum_ramp=1e7,
l1=1e-5,
l2=1e-5,
activation=c("Rectifier"),
max_w2=10,
hyper_params=hyper_params
)
编辑:这是数据的快照。它原来也有偏见
答案 0 :(得分:0)
我也遇到了类似的问题,即数据没有缺失值等。看来对我有用的解决方法是在初始化enable_assertions = FALSE
时设置h2o
。
h2o.init(nthreads = ..., enable_assertions = FALSE)