import time
import logging
from functools import reduce
logging.basicConfig(filename='debug.log', level=logging.DEBUG)
def read_large_file(file_object):
"""Uses a generator to read a large file lazily"""
while True:
data = file_object.readline()
if not data:
break
yield data
def process_file_1(file_path):
"""Opens a large file and reads it in"""
try:
with open(file_path) as fp:
for line in read_large_file(fp):
logging.debug(line)
pass
except(IOError, OSError):
print('Error Opening or Processing file')
def process_file_2(file_path):
"""Opens a large file and reads it in"""
try:
with open(path) as file_handler:
while True:
logging.debug(next(file_handler))
except (IOError, OSError):
print("Error opening / processing file")
except StopIteration:
pass
if __name__ == "__main__":
path = "TB_data_dictionary_2016-04-15.csv"
l1 = []
for i in range(1,10):
start = time.clock()
process_file_1(path)
end = time.clock()
diff = (end - start)
l1.append(diff)
avg = reduce(lambda x, y: x + y, l1) / len(l1)
print('processing time (with generators) {}'.format(avg))
l2 = []
for i in range(1,10):
start = time.clock()
process_file_2(path)
end = time.clock()
diff = (end - start)
l2.append(diff)
avg = reduce(lambda x, y: x + y, l2) / len(l2)
print('processing time (with iterators) {}'.format(avg))
计划的输出:
C:\Python34\python.exe C:/pypen/data_structures/generators/generators1.py
processing time (with generators) 0.028033358176432314
processing time (with iterators) 0.02699498330810426
在上面的程序中,我尝试使用iterators
来测量使用generators
打开大文件的时间。该文件可用here。使用迭代器读取文件的时间远低于使用生成器的时间。
我假设如果我要衡量函数process_file_1
和process_file_2
使用的memroy数量,那么生成器将胜过迭代器。有没有办法在python中测量每个函数的内存使用量。
答案 0 :(得分:4)
首先,使用代码的单次迭代来测量它的性能并不是一个好主意。由于系统性能出现任何故障,您的结果可能会有所不同(例如:后台进程,执行垃圾回收的cpu等)。您应该检查相同代码的多次迭代。
要衡量代码的效果,请使用timeit
模块:
该模块提供了一种简单的方法来计算一小段Python代码。它既有命令行界面,也有可调用界面。它避免了许多用于测量执行时间的常见陷阱。
要检查代码的内存消耗,请使用Memory Profiler
:
这是一个python模块,用于监视进程的内存消耗以及python程序的内存消耗的逐行分析。