data.frame列中至少连续五年的子集

时间:2016-11-27 17:21:08

标签: r dataframe data.table

我在R中有一个data.frame / data.table,如下所示:

df <- data.frame(
ID=c(rep("A", 20)),
year=c(1968, 1971, 1972, 1973, 1974, 1976, 1978, 1980, 1982, 1984, 1985, 
       1986, 1987, 1988, 1990, 1991, 1992, 1993, 1994, 1995))

我希望将df分组,以便仅保留连续五年的条目。在这个例子中,这是两个时期的情况(1984:1988和1990:1995)。我怎么能在R中这样做?感谢您的支持。

6 个答案:

答案 0 :(得分:10)

使用diffcumsum

的紧凑型解决方案
setDT(df)[, grp := cumsum(c(0, diff(year)) > 1), by = ID
          ][, if (.N > 4) .SD, by = grp][, grp := NULL][]

给出了期望的结果:

    ID year
 1:  A 1984
 2:  A 1985
 3:  A 1986
 4:  A 1987
 5:  A 1988
 6:  A 1990
 7:  A 1991
 8:  A 1992
 9:  A 1993
10:  A 1994
11:  A 1995

说明:

  • 使用grp := cumsum(c(0, diff(year)) > 1), by = ID为每个ID创建连续年份的(临时)分组变量。
  • 使用if (.N > 4) .SD, by = grp,您只能选择连续5年或更长时间的小组。
  • 使用grp := NULL删除(临时)分组变量。

基础R中的比较方法:

i <- with(df, ave(year, ID, FUN = function(x) { 
  r <- rle(cumsum(c(0, diff(year)) > 1));
  rep(r$lengths, r$lengths)
  } ))

df[i > 4,] # or df[which(i > 4),]

会得到相同的结果。

答案 1 :(得分:6)

这是另一种方式:

df2 <- NULL 
   sapply(seq(nrow(df)), function(x)
             {
              ifelse((sum(diff(df[x:(x+4), "year"], 1)) == 4 &
                      sum(diff(df[x:(x+4), "year"], 1) == 1) == 4),
                      df2 <<- rbind(df2, df[x:(x+4),]),"")
             })
df2 <- unique(df2)

答案 2 :(得分:4)

我们可以尝试

data.table

或使用library(data.table) i1 <- setDT(df)[, ind := (year - shift(year, fill= year[1L]))==1L , ID][, {i1 <- .I[.N * ind > 3] .(v1 = head(i1,1)-1, v2 = tail(i1, 1))}, .(ID, rl = rleid(ind))][, seq(v1, v2) , rl]$V1 df[, ind := NULL][i1] # ID year # 1: A 1984 # 2: A 1985 # 3: A 1986 # 4: A 1987 # 5: A 1988 # 6: A 1990 # 7: A 1991 # 8: A 1992 # 9: A 1993 #10: A 1994 #11: A 1995

i1 <- setDT(df)[, (shift(year, type="lead", fill = year[.N])-year)==1 |
       (year - shift(year, fill = year[1L]))==1, ID][, .I[.N>4 & V1] , .(rleid(V1), ID)]$V1
df[i1]

或稍微紧凑的选项

df <- data.frame(
   ID=c(rep("A", 20)),
   year=c(1968, 1971, 1972, 1973, 1974, 1976, 1978, 1980, 1982, 1984, 1985, 
   1986, 1987, 1988, 1990, 1991, 1992, 1993, 1994, 1995))

数据

{{1}}

答案 3 :(得分:2)

使用rowid的另一个选项:

DT[, c("rl", "rw") := {
    iscons <- cumsum(c(0L, diff(year)!=1L))
    .(iscons, rowid(ID, iscons))
}]

DT[rl %in% DT[rw>=5L]$rl]

数据:

#adding one more group
DT <- rbindlist(list(setDT(df), copy(df)[, ID := "B"]))

答案 4 :(得分:0)

我首先对元素进行了排序:

navigationView.setItemTextColor(AppCompatResources.getColorStateList(this, R.color.menu_item_text_color));

重建保留的那些:

sorted = sort(df$year, decreasing = F)
count = 0 ## count sequences
keep=c()  ## which to keep
keep_num = c()  ##counting the sequence length
keep_count=1
for(i in 2:length(sorted)){
    if((sorted[i]- sorted[i-1]) == 1){ ## if they are in a row
        count = count + 1
        if(count == 4){  ## if there 4+1 years involved in a row
            keep=c(keep, sorted[i]- 4)
        }
        if(count >= 4){ ## if length more than 5, update 
            keep_num[keep_count]=count
        }
    }
    else{ ##reset
        count =0
        keep_count = keep_count + 1
    }
}
keep_num = keep_num[!is.na(keep_num)]

我们想要保留的内容中的子集:

y = c()
for(i in 1:length(keep)){
    y = c(y, seq(keep[i], keep[i]+keep_num[i]))
}

这将选择具有所需条件的行。

selected = df[match(y, df$year, nomatch = 0),]

答案 5 :(得分:0)

步骤1。数据表中的数据&#34; d&#34;

d
hdrY     mvanoyP
 1: 1981 -14.3520324
 2: 1982   0.4900168
 3: 1983   2.6518741
 4: 1984   5.2284595
 5: 1985  -6.2874634
 6: 1986  -1.3287914
 7: 1987  20.6385345
 8: 1988  24.2090114
 9: 1989  21.5302571
10: 1990   9.0267066
11: 1991  10.4148838
12: 1992  13.9189716
13: 1993   7.8816196
14: 1994   3.4650221
15: 1995   2.8722555
16: 1996  -4.1442363
17: 1997  -3.2359926
18: 1998  -5.7479137
19: 1999   2.3481127
20: 2000   0.8089402
21: 2001 -14.4741916
22: 2002 -22.9272540
23: 2003 -27.3105212
24: 2004 -13.9726022
25: 2005 -14.0055281
26: 2006 -15.8456991
27: 2007 -21.0369933
28: 2008 -13.1031347
29: 2009   4.1517341
30: 2010  20.3711446
31: 2011  27.4202037

步骤2。选择nvanoyP&lt; 0并连续找到6年

d %<>% data.table()
    db <- d[mvanoyP < 0, ] %>%
        .[, tag := cumsum(c(0, diff(hdrY)) > 1)] %>%
        .[, if (.N > 6) .SD,.(tag)] #
    if (nrow(db) > 0){
        db[, start := min(hdrY), by = tag]
        db[,   end := max(hdrY), by = tag]
    }
    db

步骤3。输出

db
   tag hdrY   mvanoyP start  end
1:   3 2001 -14.47419  2001 2008
2:   3 2002 -22.92725  2001 2008
3:   3 2003 -27.31052  2001 2008
4:   3 2004 -13.97260  2001 2008
5:   3 2005 -14.00553  2001 2008
6:   3 2006 -15.84570  2001 2008
7:   3 2007 -21.03699  2001 2008
8:   3 2008 -13.10313  2001 2008