Sklearn:每个群集的质心的平均距离

时间:2016-11-27 12:26:54

标签: python numpy scikit-learn cluster-analysis k-means

如何找到质心到每个群集中所有数据点的平均距离。我能够从每个聚类的质心中找到每个点(在我的数据集中)的欧氏距离。现在我想找到质心到每个簇中所有数据点的平均距离。 计算每个质心的平均距离的好方法是什么? 到目前为止,我已经做到了这一点。

def k_means(self):
    data = pd.read_csv('hdl_gps_APPLE_20111220_130416.csv', delimiter=',')
    combined_data = data.iloc[0:, 0:4].dropna()
    #print combined_data
    array_convt = combined_data.values
    #print array_convt
    combined_data.head()


    t_data=PCA(n_components=2).fit_transform(array_convt)
    #print t_data
    k_means=KMeans()
    k_means.fit(t_data)
    #------------k means fit predict method for testing purpose-----------------
    clusters=k_means.fit_predict(t_data)
    #print clusters.shape
    cluster_0=np.where(clusters==0)
    print cluster_0

    X_cluster_0 = t_data[cluster_0]
    #print X_cluster_0


    distance = euclidean(X_cluster_0[0], k_means.cluster_centers_[0])
    print distance


    classified_data = k_means.labels_
    #print ('all rows forst column........')
    x_min = t_data[:, 0].min() - 5
    x_max = t_data[:, 0].max() - 1
    #print ('min is ')
    #print x_min
    #print ('max is ')
    #print x_max

    df_processed = data.copy()
    df_processed['Cluster Class'] = pd.Series(classified_data, index=df_processed.index)
    #print df_processed

    y_min, y_max = t_data[:, 1].min(), t_data[:, 1].max() + 5
    xx, yy = np.meshgrid(np.arange(x_min, x_max, 1), np.arange(y_min, y_max, 1))

    #print ('the mesh grid is: ')

    #print xx
    Z = k_means.predict(np.c_[xx.ravel(), yy.ravel()])
    Z = Z.reshape(xx.shape)

    plt.figure(1)
    plt.clf()
    plt.imshow(Z, interpolation='nearest',
               extent=(xx.min(), xx.max(), yy.min(), yy.max()),
               cmap=plt.cm.Paired,
               aspect='auto', origin='lower')


    #print Z


    plt.plot(t_data[:, 0], t_data[:, 1], 'k.', markersize=20)
    centroids = k_means.cluster_centers_
    inert = k_means.inertia_
    plt.scatter(centroids[:, 0], centroids[:, 1],
                marker='x', s=169, linewidths=3,
                color='w', zorder=8)
    plt.xlim(x_min, x_max)
    plt.ylim(y_min, y_max)
    plt.xticks(())
    plt.yticks(())
    plt.show()

总之,我想计算特定群集中所有数据点与该群集质心的平均距离,因为我需要根据这个平均距离来清理数据

4 个答案:

答案 0 :(得分:3)

这是一种方式。如果您想要欧几里德以外的其他距离度量,则可以在k_mean_distance()函数中替换另一个距离度量。

计算每个指定群集和群集中心的数据点之间的距离,并返回平均值。

距离计算功能:

def k_mean_distance(data, cx, cy, i_centroid, cluster_labels):
    # Calculate Euclidean distance for each data point assigned to centroid 
    distances = [np.sqrt((x-cx)**2+(y-cy)**2) for (x, y) in data[cluster_labels == i_centroid]]
    # return the mean value
    return np.mean(distances)

对于每个质心,使用该函数得到平均距离:

total_distance = []
for i, (cx, cy) in enumerate(centroids):
    # Function from above
    mean_distance = k_mean_distance(data, cx, cy, i, cluster_labels)
    total_dist.append(mean_distance)

所以,在你的问题的背景下:

def k_mean_distance(data, cx, cy, i_centroid, cluster_labels):
        distances = [np.sqrt((x-cx)**2+(y-cy)**2) for (x, y) in data[cluster_labels == i_centroid]]
        return np.mean(distances)

t_data=PCA(n_components=2).fit_transform(array_convt)
k_means=KMeans()
clusters=k_means.fit_predict(t_data)
centroids = km.cluster_centers_

c_mean_distances = []
for i, (cx, cy) in enumerate(centroids):
    mean_distance = k_mean_distance(t_data, cx, cy, i, clusters)
    c_mean_distances.append(mean_distance)

如果您绘制结果plt.plot(c_mean_distances),您应该会看到如下内容:

kmeans clusters vs mean value

答案 1 :(得分:1)

您可以使用以下Kmeans属性:

cluster_centers_ : array, [n_clusters, n_features]

对于每个点,使用predict(X)测试它所属的集群,然后计算到集群的距离预测返回(它返回索引)。

答案 2 :(得分:1)

alphaleonis给了很好的答案。 对于n维的一般情况,这里需要对他的答案进行一些更改:

def k_mean_distance(data, cantroid_matrix, i_centroid, cluster_labels):
    # Calculate Euclidean distance for each data point assigned to centroid
    distances = [np.linalg.norm(x-cantroid_matrix) for x in data[cluster_labels == i_centroid]]
    # return the mean value
    return np.mean(distances)

for i, cent_features in enumerate(centroids):
            mean_distance = k_mean_distance(emb_matrix, centroid_matrix, i, kmeans_clusters)
            c_mean_distances.append(mean_distance)

答案 3 :(得分:0)

计算所有距离为numpy数组。

然后使用nparray.mean()来获得平均值。