Azure ML批处理运行 - 单输出

时间:2016-11-25 05:19:58

标签: r forecasting azure-machine-learning-studio

我使用R引擎创建预测实验。我的数据源是透视的,因此我需要逐行传递。 单行预测输出效果很好。但是当我尝试填充多行时,它仍然提供单行输出 - 仅用于第一个记录。

我试图按如下方式循环我的结果:

# Map 1-based optional input ports to variables
dataset1 <- maml.mapInputPort(1) # class: data.frame

library(forecast)
library(reshape)
library(dplyr)
library(zoo)
#exclude non required columns
my.ds <- dataset1[, -c(4,5,6)]
# set the CIs we want to use here, so we can reuse this vector
cis <- c(80, 95)

for (i in 1:nrow(my.ds)) {
my.start <- my.ds[i,c(3)]
my.product <- my.ds[i, "Product"]
my.location <- my.ds[i, "Location"]
my.result <- melt(my.ds[i,], id = c("Product","Location"))
my.ts <- ts(my.result$value, frequency=52, start=c(my.start,1))
# generate the forecast using those ci levels
f <- forecast(na.interp(my.ts), h=52, level=cis)
# make a data frame containing the forecast information, including the index
z <- as.data.frame(cbind(seq(1:52),
                       f$mean,
                       Reduce(cbind, lapply(seq_along(cis), function(i) cbind(f$lower[,i], f$upper[,i])))))
# give the columns better names
names(z) <- c("index", "mean", paste(rep(c("lower", "upper"), times = length(cis)), rep(cis, each = 2), sep = "."))
# manipulate the results as you describe
zw <- z %>%
# keep only the variable you want and its index
mutate(sssf = upper.95 - mean) %>%
select(index, mean, sssf) %>%
# add product and location info
mutate(product = my.product,
       location = my.location) %>%
# rearrange columns so it's easier to read
select(product, location, index, mean, sssf)
zw <- melt(zw, id.vars = c("product", "location", "index"), measure.vars = c("mean","sssf"))
data.set <- cast(zw, product + location ~ index + variable, value = "value")
# Select data.frame to be sent to the output Dataset port
maml.mapOutputPort("data.set");
}

这是我的实验设计: experiment

这就是样本input的样子:

Sample input

我正在使用从实验网站下载的Excel测试工作簿进行测试。

1 个答案:

答案 0 :(得分:1)

我发现了问题:

{
...
ds <- cast(zw, product + location ~ index + variable, value = "value")
data.set <- rbind(data.set, ds)
}
# Select data.frame to be sent to the output Dataset port
maml.mapOutputPort("data.set");

我应该合并行然后在循环之外输出。