亲爱的Stackoverflow社区
我正在研究R,我正在做几个不同家属的二项式逻辑回归。这些分析是通过微小的变化反复进行的,我和我的同事分享结果,最好是在漂亮的表格而不是凌乱的R结果。如果我只打算这样做几次,我可以将所有分析作为单个回归进行,然后使用sjt.glm来制作漂亮的表格。虽然我一遍又一遍地进行这些类似的分析,但我正在使用lapply循环来加速和简化过程。不幸的是,我无法使lappply和sjt.glm合作。最理想的是,我只需从lapply循环中获取结果,并使用sjt.glm创建一个不错的水平对齐表。
参见示例(对于丑陋的编码感到抱歉)
library(sjPlot)
swiss$y1 <- ifelse(swiss$Fertility < median(swiss$Fertility), 0, 1)
swiss$y2 <- ifelse(swiss$Infant.Mortality < median(swiss$Infant.Mortality), 0, 1)
swiss$y3 <- ifelse(swiss$Agriculture < median(swiss$Agriculture), 0, 1)
#Normal slow way would be
fitOR1 <- glm(y1 ~ Education + Examination + Catholic, data = swiss,
family = binomial(link = "logit"))
fitOR2 <- glm(y2 ~ Education + Examination + Catholic, data = swiss,
family = binomial(link = "logit"))
fitOR3 <- glm(y3 ~ Education + Examination + Catholic, data = swiss,
family = binomial(link = "logit"))
#and then simply use summary and other formulas to look at the results
summary(fitOR1);exp(cbind(OR = coef(fitOR1), confint(fitOR1)))
#but with 20+ dependents, this would become tedious
#Doing the same analysis as a laply loop, is relatively easy (and non-tedious)
varlist <- names(swiss[c(7:9)])
results <- lapply(varlist, function(x){
glm(substitute(i ~ Education + Examination + Catholic, list(i=as.name(x))),
family =binomial, data = swiss)})
for (i in 1:3) print(summary(results[[i]]))
for (i in 1:3) print(exp(cbind(OR = coef(results[[i]]), confint(results[[i]]))))
#Though here is the catch. To get the output/results into a nice table
#I can easily use sjt.glm for the "standard" single logistic regressions.
sjt.glm(fitOR1,fitOR2,fitOR3, file = "SwissFits.html")
#Though I can't think of how I could do this for the loop-results.
#The closest I have come is perhaps something like
for(i in 1:3)(sjt.glm(results[[i]],file="LoopSwissFits.html"))
#but then I only get the results from the last regression.
#One alternative is to do
lapply(varlist,function(x){ sjt.glm(
glm(substitute(i ~ Education + Examination + Catholic, list(i=as.name(x))),
family =binomial, data = swiss), file = paste0("SwissFits_",(i=as.name(x)),".html"))})
#but then I get three separate files, when it would be preferable to
#have the results in one horizontally oriented file
你们有没有对我的问题有一个整洁而优雅的解决方案?
非常感谢你!
答案 0 :(得分:1)
stargazer套装非常适合这种情况。使用write函数将结果存储在文本文件中。要在控制台中显示,只需使用 -
install.packages("stargazer")
library(stargazer)
stargazer(results, align = TRUE, type = "text")
# To write to a word file
write(stargazer(results, align = TRUE, type = "text"), "results.txt")
答案 1 :(得分:1)
只需将列表作为第一个参数:@Override
public Fragment getItem(int i)
{ Fragment fragment;
switch(i){
case 0: fragment = new MyFragment1();
break;
case 1: fragment = new MyFragment2();
break;
case 2:
fragment = new MyFragment3(); break;
default:
throw new IllegalArgumentException("Invalid section number"); }
return fragment; }
。
答案 2 :(得分:0)
@code_is_entropy。
Stargazer很棒,但是在添加expcoef = T时它会给出错误的CI,不幸的是我在使用lapply循环时不知道如何修复它。见例子
library(stargazer);library(sjPlot)
mydata <- read.csv("http://www.ats.ucla.edu/stat/data/binary.csv")
varlist <- names(mydata[c(2:4)])
results <- lapply(varlist, function(x){
glm(substitute(admit ~i, list(i=as.name(x))),
family =binomial, data = mydata)})
stargazer(results, apply.coef = exp, align = TRUE,
column.labels = varlist, model.names = T, ci = T, type = "text")
#vs
sjt.glm(results,digits.est = 5, digits.ci = 5,p.numeric = T, digits.p=5)
#vs
for (i in 1:3)print (exp(confint(results[[i]])))
因此,如果你比较exp(confint),sjt.glm和stargazer的结果,你会发现观星者的置信区间只是偏离。
顺便说一句,抱歉发布一个答案作为评论,我只需要超过字母数量就可以给出一个正确的例子。