我目前正在尝试读取一个大文件(8000万行),我需要为每个条目进行计算密集型矩阵乘法。计算完之后,我想将结果插入数据库。由于此过程采用时间密集的方式,我希望将文件拆分为多个核心以加快进程。
经过研究,我发现了这个有希望的尝试,它将文件分成 n 部分。
def file_block(fp, number_of_blocks, block):
'''
A generator that splits a file into blocks and iterates
over the lines of one of the blocks.
'''
assert 0 <= block and block < number_of_blocks
assert 0 < number_of_blocks
fp.seek(0,2)
file_size = fp.tell()
ini = file_size * block / number_of_blocks
end = file_size * (1 + block) / number_of_blocks
if ini <= 0:
fp.seek(0)
else:
fp.seek(ini-1)
fp.readline()
while fp.tell() < end:
yield fp.readline()
迭代地说,你可以像这样调用函数:
if __name__ == '__main__':
fp = open(filename)
number_of_chunks = 4
for chunk_number in range(number_of_chunks):
print chunk_number, 100 * '='
for line in file_block(fp, number_of_chunks, chunk_number):
process(line)
虽然这有效,但我遇到了问题,使用多处理并行化:
fp = open(filename)
number_of_chunks = 4
li = [file_block(fp, number_of_chunks, chunk_number) for chunk_number in range(number_of_chunks)]
p = Pool(cpu_count() - 1)
p.map(processChunk,li)
如果出现错误,则无法对发电机进行酸洗。
虽然我理解这个错误,但是首先遍历整个文件以将所有行放入列表中是太昂贵了。
此外,我希望每次迭代使用每个核心的行块,因为一次将多行插入数据库更有效(如果使用典型的映射方法,则不是1乘1)
感谢您的帮助。
答案 0 :(得分:3)
不是预先创建生成器并将它们传递到每个线程,而是将其留给线程代码。
def processChunk(params):
filename, chunk_number, number_of_chunks = params
with open(filename, 'r') as fp:
for line in file_block(fp, number_of_chunks, chunk_number):
process(line)
li = [(filename, i, number_of_chunks) for i in range(number_of_chunks)]
p.map(processChunk, li)