我有一个pandas数据框,其中一列是Series本身。例如:
df.head()
Col1 Col2
1 ["name1","name2","name3"]
1 ["name3","name2","name4"]
2 ["name1","name2","name3"]
2 ["name1","name5","name6"]
我需要在Col1组中连接Col2。我想要像
这样的东西Col1 Col2
1 ["name1","name2","name3","name4"]
2 ["name1","name2","name3","name5","name6"]
我尝试使用groupby作为
.agg({"Col2":lambda x: pd.Series.append(x)})
但这会引发错误,说明需要两个参数。我也尝试在agg函数中使用sum。失败但失败并没有减少。
我该怎么做?
答案 0 :(得分:1)
是的,您无法对此类分类数据使用.aggby{}
。无论如何,这是我对这个问题的抨击,使用了numpy的帮助。 (为清楚起见)
import numpy as np
# Set group by ("Col1") unique values
groupby = df["Col1"].unique()
# Create empty dict to store values on each iteration
d = {}
for i,val in enumerate(groupby):
# Set "Col1" key, to the unique value (e.g., 1)
d.setdefault("Col1",[]).append(val)
# Create empty list to store values from "Col2"
col2_unis=[]
# Create sub-DataFrame for each unique groupby value
sdf = df.loc[df["Col1"]==val]
# Loop through the 2D-array/Series "Col2" and append each
# value to col_unis (using list comprehension)
col2_unis.append([[j for j in array] for i,array in enumerate(sdf["Col2"].values)])
# Set "Col2" key, to be unique values of col2_unis
d.setdefault("Col2",[]).append(np.unique(col2_unis))
new_df = pd.DataFrame(d)
print(new_df)
更精简的版本如下:
d = {}
for i,val in enumerate(df["Col1"].unique()):
d.setdefault("Col1",[]).append(val)
sdf = df.loc[df["Col1"]==val]
d.setdefault("Col2",[]).append(np.unique([[j for j in array] for i,array in enumerate(df.loc[df["Col1"]==val, "Col2"].values)]))
new_df = pd.DataFrame(d)
print(new_df)
通过查看this related SO question了解有关Python .setdefault()
词典功能的更多信息。
答案 1 :(得分:1)
您可以groupby
使用apply
自定义函数,首先按chain
(最快solution)展平嵌套列表,然后按set
删除重复项,转换为list
并最后排序:
import pandas as pd
from itertools import chain
df = pd.DataFrame({'Col1':[1,1,2,2],
'Col2':[["name1","name2","name3"],
["name3","name2","name4"],
["name1","name2","name3"],
["name1","name5","name6"]]})
print (df)
Col1 Col2
0 1 [name1, name2, name3]
1 1 [name3, name2, name4]
2 2 [name1, name2, name3]
3 2 [name1, name5, name6]
print (df.groupby('Col1')['Col2']
.apply(lambda x: sorted(list(set(list(chain.from_iterable(x))))))
.reset_index())
Col1 Col2
0 1 [name1, name2, name3, name4]
1 2 [name1, name2, name3, name5, name6]
解决方案可以更简单,只需要chain
,set
和sorted
:
print (df.groupby('Col1')['Col2']
.apply(lambda x: sorted(set(chain.from_iterable(x))))
.reset_index())
Col1 Col2
0 1 [name1, name2, name3, name4]
1 2 [name1, name2, name3, name5, name6]