对于包含nan的数组的行,意味着直到25百分位数

时间:2016-11-21 06:05:49

标签: numpy multidimensional-array vectorization nan numpy-broadcasting

我有一个2d数组x,每行有不同数量的nan值:

array([[   nan, -0.355, -0.036, ...,    nan,    nan],
       [   nan, -0.341, -0.047, ...,    nan,  0.654],
       [  .016, -1.147, -0.667, ...,    nan,    nan],
       ..., 
       [   nan,  0.294, -0.235, ...,    0.65,   nan]])

给定此数组,对于每一行,我想计算前25个百分点内所有值的平均值。我正在做以下事情:

limit = np.nanpercentile(x, 25, axis=1) # output 1D array
ans = np.nanmean(x * (x < limit[:,None]), axis=1)

但是这给出了错误的结果 - 特别是计数(np.nansum / np.nanmean)无论我选择什么百分位数都保持不变,因为比较在不正确的地方产生零,并被计为有效值意思。我不能简单地使用x[x>limit[:,None]],因为它提供了一维数组,我需要一个2D结果。

我通过以下方式解决了这个问题:

f = x.copy()
f[f > limit[:,None]] = np.nan
ans = np.nanmean(f, axis=1) 

有更好的方法吗?

1 个答案:

答案 0 :(得分:2)

方法#1:您可以创建一个无效的掩码,它们是原始数组的NaNsf > limit[:,None]的掩码。然后,使用此掩码执行np.nanmean等效方法,只考虑masking的有效方法。使用masks/boolean arrays的好处在于内存,因为它占用的内存比浮动pt数组少8倍。因此,我们会有这样的实现 -

# Create mask of non-NaNs and thresholded ones
mask = ~np.isnan(x) & (x <= limit[:,None])

# Get the row, col indices. Use the row indices for bin-based summing and
# finally averaging by using those indices to get the group lengths.
r,c = np.where(mask)
out = np.bincount(r,x[mask])/np.bincount(r)

方法#2:我们也可以使用np.add.reduceat这里的帮助,因为已经按照掩码对分类进行了分类。所以,效率会更高 -

# Get the valid mask as before
mask = ~np.isnan(x) & (x <= limit[:,None])

# Get valid row count. Use np.add.reduceat to perform grouped summations
# at intervals separated by row indices.
rowc = mask.sum(1)
out = np.add.reduceat(x[mask],np.append(0,rowc[:-1].cumsum()))/rowc

<强>基准

功能定义 -

def original_app(x, limit):
    f = x.copy()
    f[f > limit[:,None]] = np.nan
    ans = np.nanmean(f, axis=1) 
    return ans

def proposed1_app(x, limit):
    mask = ~np.isnan(x) & (x <= limit[:,None])
    r,c = np.where(mask)
    out = np.bincount(r,x[mask])/np.bincount(r)
    return out

def proposed2_app(x, limit):
    mask = ~np.isnan(x) & (x <= limit[:,None])
    rowc = mask.sum(1)
    out = np.add.reduceat(x[mask],np.append(0,rowc[:-1].cumsum()))/rowc
    return out

计时和验证 -

In [402]: # Setup inputs
     ...: x = np.random.randn(400,500)
     ...: x.ravel()[np.random.randint(0,x.size,x.size//4)] = np.nan # Half as NaNs
     ...: limit = np.nanpercentile(x, 25, axis=1)
     ...: 

In [403]: np.allclose(original_app(x, limit),proposed1_app(x, limit))
Out[403]: True

In [404]: np.allclose(original_app(x, limit),proposed2_app(x, limit))
Out[404]: True

In [405]: %timeit original_app(x, limit)
100 loops, best of 3: 5 ms per loop

In [406]: %timeit proposed1_app(x, limit)
100 loops, best of 3: 4.02 ms per loop

In [407]: %timeit proposed2_app(x, limit)
100 loops, best of 3: 2.18 ms per loop