我试图使用张量流中的递归神经网络来预测股市数据。数据文件中有5个特征和> 5000行。标签是调整后的关闭。
为我的输入文件编辑https://www.tensorflow.org/versions/r0.11/api_docs/python/train.html#AdamOptimizer后:
Traceback (most recent call last):
File "rnn.py", line 70, in <module>
train_neural_network(x)
File "rnn.py", line 60, in train_neural_network
y: batch_y})
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.py", line 717, in run
run_metadata_ptr)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.py", line 915, in _run
feed_dict_string, options, run_metadata)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.py", line 965, in _do_run
target_list, options, run_metadata)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.py", line 985, in _do_call
raise type(e)(node_def, op, message)
tensorflow.python.framework.errors.InvalidArgumentError: logits and labels must be same size: logits_size=[128,1] labels_size=[1,128]
[[Node: SoftmaxCrossEntropyWithLogits = SoftmaxCrossEntropyWithLogits[T=DT_FLOAT, _device="/job:localhost/replica:0/task:0/cpu:0"](Reshape_1, Reshape_2)]]
Caused by op u'SoftmaxCrossEntropyWithLogits', defined at:
File "rnn.py", line 70, in <module>
train_neural_network(x)
File "rnn.py", line 42, in train_neural_network
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(prediction, y))
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/nn_ops.py", line 676, in softmax_cross_entropy_with_logits
precise_logits, labels, name=name)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/gen_nn_ops.py", line 1744, in _softmax_cross_entropy_with_logits
features=features, labels=labels, name=name)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/op_def_library.py", line 749, in apply_op
op_def=op_def)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/ops.py", line 2380, in create_op
original_op=self._default_original_op, op_def=op_def)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/ops.py", line 1298, in __init__
self._traceback = _extract_stack()
InvalidArgumentError (see above for traceback): logits and labels must be same size: logits_size=[128,1] labels_size=[1,128]
[[Node: SoftmaxCrossEntropyWithLogits = SoftmaxCrossEntropyWithLogits[T=DT_FLOAT, _device="/job:localhost/replica:0/task:0/cpu:0"](Reshape_1, Reshape_2)]]
追溯显示了这一点:
fnval
我不知道logit大小或标签尺寸应该是什么,因此无法绕过这个错误。请帮忙!!
答案 0 :(得分:0)
错误在这一行:
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(prediction, y))
这里有两个问题:
形状错误,可以通过将y
重塑为[128]
来修复:
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(
logits=prediction, labels=tf.reshape(y, [batch_size])))
代码使用具有单个输出类的softmax交叉熵损失。单个值的softmax为1,因此所有预测都将为1.0,您的模型将无法学习。考虑更改模型以预测2个或更多类,或计算回归。
答案 1 :(得分:-1)
def recurrent_neural_network(x):
的最后一行
output = tf.transpose(tf.add(tf.matmul(outputs[-1], layer['weights']), layer['biases'])))