我是张力流的新手,我在这里遇到了一个烦人的问题。
我正在制作一个程序来加载图像"原始数据"从tfrecord文件中使用tf.WholeFileReader.read(image_name_queue)
获取,然后使用tf.image.decode_jpeg(raw_data, channels=3)
对其进行解码,然后将其传递给对其进行矢量化的函数。
主要代码
logging.info('setting up folder')
create_image_data_folder()
save_configs()
logging.info('creating graph')
filename_queue = tf.train.string_input_producer([
configs.TFRECORD_IMAGES_PATH],
num_epochs=1)
image_tensor, name_tensor = read_and_decode(filename_queue)
image_batch_tensor, name_batch_tensor = tf.train.shuffle_batch(
[image_tensor, name_tensor],
configs.BATCH_SIZE,
1000 + 3 * configs.BATCH_SIZE,
min_after_dequeue=1000)
image_embedding_batch_tensor = configs.IMAGE_EMBEDDING_FUNCTION(image_batch_tensor)
init = tf.initialize_all_variables()
init_local = tf.initialize_local_variables()
logging.info('starting session')
with tf.Session().as_default() as sess:
sess.run(init)
sess.run(init_local)
tf.train.start_queue_runners()
logging.info('vectorizing')
data_points = []
for _ in tqdm(xrange(get_n_batches())):
name_batch = sess.run(name_batch_tensor)
image_embedding_batch = sess.run(image_embedding_batch_tensor)
for vector, name in zip(list(image_embedding_batch), name_batch):
data_points.append((vector, name))
logging.info('saving')
save_pkl_file(data_points, 'vectors.pkl')
read_and_decode 功能
def read_and_decode(tfrecord_file_queue):
logging.debug('reading image and decodes it from queue')
reader = tf.TFRecordReader()
_, serialized_example = reader.read(tfrecord_file_queue)
features = tf.parse_single_example(serialized_example,
features={
'image': tf.FixedLenFeature([], tf.string),
'name': tf.FixedLenFeature([], tf.string)
}
)
image = process_image_data(features['image'])
return image, features['name']
代码正在运行,但最终遇到了一个错误的非jpeg文件,并且出现错误并且程序停止运行。
错误
InvalidArgumentError (see above for traceback): Invalid JPEG data, size 556663
我想跳过这些"错误"。我尝试用try
和except
包围代码。
新代码
for _ in tqdm(xrange(get_n_batches())):
try:
name_batch = sess.run(name_batch_tensor)
image_embedding_batch = sess.run(image_embedding_batch_tensor)
for vector, name in zip(list(image_embedding_batch), name_batch):
data_points.append((vector, name))
except Exception as e:
logging.warning('error occured: {}'.format(e))
当我再次运行程序时出现同样的错误,try
和except
似乎无法处理错误。
我该如何处理这些例外?另外,如果你发现我误解了张量流"结构"请提一下。
答案 0 :(得分:1)
我知道这不适用于您的示例,但是我偶然发现了一个不同的场景,尽管这样做,TensorFlow似乎也没有捕获到异常
try:
# Run code that throw tensorflow error
except:
print('This won't catch the exception...')
使问题难以解决的是TensorFlow调试指向错误的行;它告诉我错误在于图的构造,而不是图的执行。
具体问题?
我试图从.meta文件恢复模型:
try:
saver = tf.train.import_meta_graph('my_error_generating_model.meta') # tf throws err here
graph = tf.get_default_graph()
except:
print('This won't run')
with tf.Session() as sess:
# This is where error is actually generated
saver.restore(sess, tf.train.latest_checkpoint('./'))
sess.run(...) # Propagating through graph generates a problem
当然,解决方案是将try-catch包装器放在执行代码周围!
答案 1 :(得分:0)
问题在于,使用“ except except”,您将只捕获从通用类Exception继承的异常,而不能捕获所有异常。 如果您想从tensorflow中捕获特定异常,可以尝试:
try:
# Your code
except tf.errors.InvalidArgumentError as e
logging.warning('error occured: {}'.format(e))
如果您想捕获任何异常:
except: # Catch all exception
logger.exception('error occured")