Tensorflow,尝试,除了不处理异常

时间:2016-11-19 12:56:43

标签: python image tensorflow

我是张力流的新手,我在这里遇到了一个烦人的问题。

我正在制作一个程序来加载图像"原始数据"从tfrecord文件中使用tf.WholeFileReader.read(image_name_queue)获取,然后使用tf.image.decode_jpeg(raw_data, channels=3)对其进行解码,然后将其传递给对其进行矢量化的函数。

主要代码

logging.info('setting up folder')
create_image_data_folder()
save_configs()

logging.info('creating graph')
filename_queue = tf.train.string_input_producer([
                                             configs.TFRECORD_IMAGES_PATH],
                                             num_epochs=1)

image_tensor, name_tensor = read_and_decode(filename_queue)
image_batch_tensor, name_batch_tensor = tf.train.shuffle_batch(
                                        [image_tensor, name_tensor],
                                        configs.BATCH_SIZE,
                                        1000 + 3 * configs.BATCH_SIZE,
                                        min_after_dequeue=1000)
image_embedding_batch_tensor = configs.IMAGE_EMBEDDING_FUNCTION(image_batch_tensor)

init = tf.initialize_all_variables()
init_local = tf.initialize_local_variables()
logging.info('starting session')
with tf.Session().as_default() as sess:
    sess.run(init)
    sess.run(init_local)
    tf.train.start_queue_runners()

    logging.info('vectorizing')
    data_points = []
    for _ in tqdm(xrange(get_n_batches())):
        name_batch = sess.run(name_batch_tensor)
        image_embedding_batch = sess.run(image_embedding_batch_tensor)
        for vector, name in zip(list(image_embedding_batch), name_batch):
            data_points.append((vector, name))

logging.info('saving')
save_pkl_file(data_points, 'vectors.pkl')

read_and_decode 功能

def read_and_decode(tfrecord_file_queue):
    logging.debug('reading image and decodes it from queue')
    reader = tf.TFRecordReader()
    _, serialized_example = reader.read(tfrecord_file_queue)
    features = tf.parse_single_example(serialized_example,
        features={
            'image': tf.FixedLenFeature([], tf.string),
            'name': tf.FixedLenFeature([], tf.string)
        }
    )
    image = process_image_data(features['image'])

    return image, features['name']

代码正在运行,但最终遇到了一个错误的非jpeg文件,并且出现错误并且程序停止运行

错误

InvalidArgumentError (see above for traceback): Invalid JPEG data, size 556663

我想跳过这些"错误"。我尝试用tryexcept包围代码。

新代码

for _ in tqdm(xrange(get_n_batches())):
    try:
        name_batch = sess.run(name_batch_tensor)
        image_embedding_batch = sess.run(image_embedding_batch_tensor)
        for vector, name in zip(list(image_embedding_batch), name_batch):
            data_points.append((vector, name))
    except Exception as e:
        logging.warning('error occured: {}'.format(e))

当我再次运行程序时出现同样的错误,tryexcept 似乎无法处理错误

我该如何处理这些例外?另外,如果你发现我误解了张量流"结构"请提一下。

2 个答案:

答案 0 :(得分:1)

我知道这不适用于您的示例,但是我偶然发现了一个不同的场景,尽管这样做,TensorFlow似乎也没有捕获到异常

try:
    # Run code that throw tensorflow error
except:
    print('This won't catch the exception...')

使问题难以解决的是TensorFlow调试指向错误的行;它告诉我错误在于图的构造,而不是图的执行。

具体问题?

我试图从.meta文件恢复模型:

try:
    saver = tf.train.import_meta_graph('my_error_generating_model.meta') # tf throws err here
    graph = tf.get_default_graph()
except:
    print('This won't run')

with tf.Session() as sess:
    # This is where error is actually generated
    saver.restore(sess, tf.train.latest_checkpoint('./'))
    sess.run(...) # Propagating through graph generates a problem

当然,解决方案是将try-catch包装器放在执行代码周围!

答案 1 :(得分:0)

问题在于,使用“ except except”,您将只捕获从通用类Exception继承的异常,而不能捕获所有异常。 如果您想从tensorflow中捕获特定异常,可以尝试:

try:
    # Your code
except tf.errors.InvalidArgumentError as e
    logging.warning('error occured: {}'.format(e))

如果您想捕获任何异常:

except: # Catch all exception
    logger.exception('error occured")