这与this question有关,假设使用生成器(迭代器)遍历嵌套数组将是迭代元素的最佳选择,只要你不需要存储结果,如果你只想平整数组,那么使用重复数组连接是最好的。
但是,我决定做一些测试,并实现这个函数(以懒惰和存储形式展平包含[Any]
或Int
s的数组[Int]
)结果表明存储的表格更快,即使只是用于迭代元素!这意味着,不知何故,迭代生成器比在内存中构造一个新数组花费更多的时间,然后然后迭代 。
令人难以置信的是,它甚至比同一程序的 python 实施慢约5-70%,随着输入的减少而恶化。 Swift是使用-O
标志构建的。
[Int]
显性,3。大输入,Int
显性:
let array1: [Any] = [Array(1...100), Array(101...105), 106,
Array(107...111), 112, 113, 114, Array(115...125)]
let array2: [Any] = Array(repeating: Array(1...5), count: 2000)
let array3: [Any] = Array(repeating: 31, count: 10000)
A1 = [list(range(1, 101)), list(range(101, 106)), 106,
list(range(107, 112)), 112, 113, 114, list(range(115, 126))]
A2 = list(range(1, 6)) * 2000
A3 = [31] * 10000
生成器和数组构建器:
func chain(_ segments: [Any]) -> AnyIterator<Int>{
var i = 0
var j = 0
return AnyIterator<Int> {
while i < segments.count {
switch segments[i] {
case let e as Int:
i += 1
return e
case let E as [Int]:
if j < E.count {
let val = E[j]
j += 1
return val
}
j = 0
i += 1
default:
return nil
}
}
return nil
}
}
func flatten_array(_ segments: [Any]) -> [Int] {
var result = [Int]()
for segment in segments {
switch segment {
case let segment as Int:
result.append(segment)
case let segment as [Int]:
result.append(contentsOf: segment)
default:
break
}
}
return result
}
def chain(L):
for i in L:
if type(i) is int:
yield i
elif type(i) is list:
yield from i
def flatten_list(L):
result = []
for i in L:
if type(i) is int:
result.append(i)
elif type(i) is list:
result.extend(i)
return result
基准测试结果(第一个测试用例为100000个循环,其他测试用例为1000个):
test case 1 (small mixed input)
Filling an array : 0.068221092224121094 s
Filling an array, and looping through it : 0.074559926986694336 s
Looping through a generator : 1.5902719497680664 s *
Materializing the generator to an array : 1.759943962097168 s *
test case 2 (large input, [Int] s)
Filling an array : 0.20634698867797852 s
Filling an array, and looping through it : 0.21031379699707031 s
Looping through a generator : 1.3505551815032959 s *
Materializing the generator to an array : 1.4733860492706299 s *
test case 3 (large input, Int s)
Filling an array : 0.27392101287841797 s
Filling an array, and looping through it : 0.27670192718505859 s
Looping through a generator : 0.85304021835327148 s
Materializing the generator to an array : 1.0027849674224854 s *
test case 1 (small mixed input)
Filling an array : 0.1622014045715332 s
Filling an array, and looping through it : 0.4312894344329834 s
Looping through a generator : 0.6839139461517334 s
Materializing the generator to an array : 0.5300459861755371 s
test case 2 (large input, [int] s)
Filling an array : 1.029205083847046 s
Filling an array, and looping through it : 1.2195289134979248 s
Looping through a generator : 1.0876803398132324 s
Materializing the generator to an array : 0.8958714008331299 s
test case 3 (large input, int s)
Filling an array : 1.0181667804718018 s
Filling an array, and looping through it : 1.244570255279541 s
Looping through a generator : 1.1220412254333496 s
Materializing the generator to an array : 0.9486079216003418 s
显然,Swift非常非常擅长构建数组。但是为什么它的生成器在某些情况下如此慢,甚至比Python慢? (在表格中标有*
。)使用极大的输入(> 100,000,000个元素,几乎崩溃Swift)进行测试表明,即使在极限情况下,发生器也会比阵列填充更慢在最好的情况下,因子为3.25。
如果这是该语言的内在特征,它会产生一些有趣的含义。例如,常识(对我来说,无论如何都是python程序员)如果我们试图合成一个不可变对象(比如一个字符串),我们应该首先将源提供给一个生成函数来展开它,然后手将输出关闭到joined()
方法,该方法适用于单个浅序列。相反,看起来最有效的策略是通过数组进行序列化;将源展开到中间数组,然后构造数组的输出。
正在构建一个完整的新数组,然后通过它迭代它比原始数组上的延迟迭代更快?为什么呢?
(Possibly related javascript question)
以下是测试代码:
func time(test_array: [Any], cycles: Int = 1000000) -> (array_iterate: Double,
array_store : Double,
generate_iterate: Double,
generate_store: Double) {
func start() -> Double { return Date().timeIntervalSince1970 }
func lap(_ t0: Double) -> Double {
return Date().timeIntervalSince1970 - t0
}
var t0 = start()
for _ in 0..<cycles {
for e in flatten_array(test_array) { e + 1 }
}
let ΔE1 = lap(t0)
t0 = start()
for _ in 0..<cycles {
let array: [Int] = flatten_array(test_array)
}
let ΔE2 = lap(t0)
t0 = start()
for _ in 0..<cycles {
let G = chain(test_array)
while let g = G.next() { g + 1 }
}
let ΔG1 = lap(t0)
t0 = start()
for _ in 0..<cycles {
let array: [Int] = Array(chain(test_array))
}
let ΔG2 = lap(t0)
return (ΔE1, ΔE2, ΔG1, ΔG2)
}
print(time(test_array: array1, cycles: 100000))
print(time(test_array: array2, cycles: 1000))
print(time(test_array: array3, cycles: 1000))
def time_f(test_array, cycles = 1000000):
lap = lambda t0: time() - t0
t0 = time()
for _ in range(cycles):
for e in flatten_list(test_array):
e + 1
ΔE1 = lap(t0)
t0 = time()
for _ in range(cycles):
array = flatten_list(test_array)
ΔE2 = lap(t0)
t0 = time()
for _ in range(cycles):
for g in chain(test_array):
g + 1
ΔG1 = lap(t0)
t0 = time()
for _ in range(cycles):
array = list(chain(test_array))
ΔG2 = lap(t0)
return ΔE1, ΔE2, ΔG1, ΔG2
print(time_f(A1, cycles=100000))
print(time_f(A3, cycles=1000))
print(time_f(A2, cycles=1000))
答案 0 :(得分:3)
你问&#34;为什么它的[Swift]生成器在某些情况下如此慢,甚至比Python慢?&#34;
我的回答是,我不认为它们几乎和你的结果一样慢。特别是,我将尝试证明循环遍历迭代器应该比为所有测试用例构造数组更快。
在早期的工作中(参见http://lemire.me/blog/2016/09/22/swift-versus-java-the-bitset-performance-test/上的一篇相关博客文章),我发现Swift迭代器的速度大约是Java在Java工作时的一半。这不是很好,但Java在这方面非常有效。与此同时,Go更糟糕。我向你提出,Swift迭代器可能效率不高,但它们可能只是原始C代码可能的两倍。而性能差距可能与Swift中功能内联不足有关。
我发现您使用的是AnyIterator
。我建议从struct
派生一个IteratorProtocol
,这有利于确保不必进行任何动态调度。这是一个相对有效的可能性:
public struct FastFlattenIterator: IteratorProtocol {
let segments: [Any]
var i = 0 // top-level index
var j = 0 // second-level index
var jmax = 0 // essentially, this is currentarray.count, but we buffer it
var currentarray : [Int]! // quick reference to an int array to be flatten
init(_ segments: [Any]) {
self.segments = segments
}
public mutating func next() -> Int? {
if j > 0 { // we handle the case where we iterate within an array separately
let val = currentarray[j]
j += 1
if j == jmax {
j = 0
i += 1
}
return val
}
while i < segments.count {
switch segments[i] {
case let e as Int: // found an integer value
i += 1
return e
case let E as [Int]: // first encounter with an array
jmax = E.count
currentarray = E
if jmax > 0 {
j = 1
return E[0]
}
i += 1
default:
return nil
}
}
return nil
}
}
通过这门课,我得到以下数字。对于每个测试用例,前四个方法取自您的代码示例,而后两个(快速迭代器)是使用新结构构建的。请注意&#34;通过快速迭代器循环&#34;永远是最快的。
test case 1 (small mixed input)
Filling an array : 0.0073099999999999997 ms
Filling an array, and looping through it : 0.0069870000000000002 ms
Looping through a generator : 0.18385799999999999 ms
Materializing the generator to an array : 0.18745700000000001 ms
Looping through a fast iterator : 0.005372 ms
Materializing the fast iterator : 0.015883999999999999 ms
test case 2 (large input, [Int] s)
Filling an array : 2.125931 ms
Filling an array, and looping through it : 2.1169820000000001 ms
Looping through a generator : 15.064767 ms
Materializing the generator to an array : 15.45152 ms
Looping through a fast iterator : 1.572919 ms
Materializing the fast iterator : 1.964912 ms
test case 3 (large input, Int s)
Filling an array : 2.9140269999999999 ms
Filling an array, and looping through it : 2.9064290000000002 ms
Looping through a generator : 9.8297640000000008 ms
Materializing the generator to an array : 9.8297640000000008 ms
Looping through a fast iterator : 1.978038 ms
Materializing the fast iterator : 2.2565339999999998 ms
您可以在GitHub上找到我的完整代码示例:https://github.com/lemire/Code-used-on-Daniel-Lemire-s-blog/tree/master/extra/swift/iterators