我有一个时间序列x[0], x[1], ... x[n-1]
,存储为1维numpy
数组。我想将其转换为以下矩阵:
NaN, ... , NaN , x[0]
NaN, ... , x[0], x[1]
.
.
NaN, x[0], ... , x[n-3],x[n-2]
x[0], x[1], ... , x[n-2],x[n-1]
我想使用这个矩阵来加速时间序列计算。 numpy
或scipy
中是否有功能可以执行此操作? (我不想在python中使用for循环来执行此操作)
答案 0 :(得分:3)
使用np.lib.stride_tricks.as_strided
-
<section class="grid">
<div class="item" style="background: url('img/1.png') center center no-repeat; background-size: cover;"></div>
<div class="item" style="background: url('img/2.png') center center no-repeat; background-size: cover;"></div>
<div class="item" style="background: url('img/4.png') center center no-repeat; background-size: cover;"></div>
<div class="item" style="background: url('img/3.png') center center no-repeat; background-size: cover;"></div>
</section>
示例运行 -
def nanpad_sliding2D(a):
L = a.size
a_ext = np.concatenate(( np.full(a.size-1,np.nan) ,a))
n = a_ext.strides[0]
strided = np.lib.stride_tricks.as_strided
return strided(a_ext, shape=(L,L), strides=(n,n))
In [41]: a
Out[41]: array([48, 82, 96, 34, 93, 25, 51, 26])
In [42]: nanpad_sliding2D(a)
Out[42]:
array([[ nan, nan, nan, nan, nan, nan, nan, 48.],
[ nan, nan, nan, nan, nan, nan, 48., 82.],
[ nan, nan, nan, nan, nan, 48., 82., 96.],
[ nan, nan, nan, nan, 48., 82., 96., 34.],
[ nan, nan, nan, 48., 82., 96., 34., 93.],
[ nan, nan, 48., 82., 96., 34., 93., 25.],
[ nan, 48., 82., 96., 34., 93., 25., 51.],
[ 48., 82., 96., 34., 93., 25., 51., 26.]])
正如@Eric的评论中所提到的,这种基于步幅的方法将是一种记忆效率高的方法,因为输出只是strides
NaNs-padded
版本的视图。让我们测试一下 -
1D
让我们通过将值分配到In [158]: a # Sample 1D input
Out[158]: array([37, 95, 87, 10, 35])
In [159]: L = a.size # Run the posted approach
...: a_ext = np.concatenate(( np.full(a.size-1,np.nan) ,a))
...: n = a_ext.strides[0]
...: strided = np.lib.stride_tricks.as_strided
...: out = strided(a_ext, shape=(L,L), strides=(n,n))
...:
In [160]: np.may_share_memory(a_ext,out) O/p might be a view into extended version
Out[160]: True
然后检查a_ext
来确认输出实际上是一个视图。
out
和a_ext
的初始值:
out
修改In [161]: a_ext
Out[161]: array([ nan, nan, nan, nan, 37., 95., 87., 10., 35.])
In [162]: out
Out[162]:
array([[ nan, nan, nan, nan, 37.],
[ nan, nan, nan, 37., 95.],
[ nan, nan, 37., 95., 87.],
[ nan, 37., 95., 87., 10.],
[ 37., 95., 87., 10., 35.]])
:
a_ext
查看新的In [163]: a_ext[:] = 100
:
out
确认这是一种观点。
最后,让我们测试一下内存要求:
In [164]: out
Out[164]:
array([[ 100., 100., 100., 100., 100.],
[ 100., 100., 100., 100., 100.],
[ 100., 100., 100., 100., 100.],
[ 100., 100., 100., 100., 100.],
[ 100., 100., 100., 100., 100.]])
因此,输出即使它显示为In [131]: a_ext.nbytes
Out[131]: 72
In [132]: out.nbytes
Out[132]: 200
个字节实际上只是200
个字节,因为它是一个大小为72
字节的扩展数组的视图。
使用Scipy's toeplitz
-
72