我试图从数据的均值和标准差(std)绘制置信区间。这是我写的代码片段:
MeanA=1.876; %mean of A
STDA=0.018; % std of A
MeanB=1.821;
STDB=0.039;
MeanC=1.735;
STDC=0.023;
MeanD=1.667;
STDD=0.039;
Y = [MeanA MeanB ;
MeanC MeanD ];
errY= [STDA STDB;
STDC STDC ];
如果我绘制正态分布,那么它们的cofidence inteval似乎重叠
alpha = 0.05; % significance level
for tt=1:length(Y)
figure
mu = Y(tt,1); % mean
sigma = errY(tt,1);
cutoff1n = norminv(alpha, mu, sigma);
cutoff2n = norminv(1-alpha, mu, sigma);
xn = [linspace(mu-4*sigma,cutoff1n), ...
linspace(cutoff1n,cutoff2n), ...
linspace(cutoff2n,mu+4*sigma)];
yn = normpdf(xn, mu, sigma);
plot(xn,yn)
mu = Y(tt,2); % mean
sigma = errY(tt,2);
cutoff1 = norminv(alpha, mu, sigma);
cutoff2 = norminv(1-alpha, mu, sigma);
x = [linspace(mu-4*sigma,cutoff1), ...
linspace(cutoff1,cutoff2), ...
linspace(cutoff2,mu+4*sigma)];
y = normpdf(x, mu, sigma);
hold on, plot(x,y)
plot(x,y,'r-',xn,yn,'g-' , 'LineWidth',3)
set(gca,'Fontsize', 32)
if tt==1
hleg1=legend('A', 'B');
title('study1')
elseif tt==2
hleg1=legend('C', 'D');
title('Study2')
end
set(hleg1,'Location','NorthEastoutside')
set(gca,'Fontsize',22)
xlo = [x(x<=cutoff1) cutoff1];
ylo = [y(x<=cutoff1) 0];
patch(xlo, ylo, 'r')
xhi = [cutoff2 x(x>=cutoff2)];
yhi = [0 y(x>=cutoff2)];
patch(xhi, yhi, 'r')
xlon = [xn(xn<=cutoff1n) cutoff1n];
ylon = [yn(xn<=cutoff1n) 0];
patch(xlon, ylon, 'g')
xhin = [cutoff2n xn(xn>=cutoff2n)];
yhin = [0 yn(xn>=cutoff2n)];
patch(xhin, yhin, 'g')
end
我看到了置信区间(CI)重叠的情节。
现在我需要以;
的形式绘制CI有人可以帮助绘制意味着
的CI%%
我正按以下方式计算Ci:
SE2=errY/sqrt(10);
CI2n=Y-1.96*(SE2);
CI2p=Y+1.96*(SE2);
请告诉它是否正确,如果是,我该如何绘制它们。感谢
答案 0 :(得分:0)
当标准差mu
已知且样本大小为sigma
时,平均值n
的95%置信区间由
CI = mu +/- 1.96*sigma/sqrt(n)
因此,对于mu = Y
和sigma = errY
,您对95%置信区间的计算对于n = 10
的样本大小是正确的。
要使用误差线绘制这些值,请使用MATLAB的errorbar
函数(documentation)尝试以下操作:
n = 10;
SE2=errY/sqrt(n);
for i = 1:size(SE2,1)
figure
y = Y(i,:);
x = 1:length(y);
e = 1.96*SE2(i,:);
errorbar(1:length(y),y,e,e,'k.','markersize',18);
if i == 1
c = ['A';'B'];
elseif i == 2
c = ['C';'D'];
end
set(gca,'xtick',x,'xticklabels',c)
end
产生this image的(我想将图像内联,但缺乏足够的代表)。
您可能会注意到置信区间似乎没有重叠。但是,我们可以通过设置n = 1
来获取密度图中的结果,这意味着CI = mu +/- 1.96*sigma
。我会发布第二张图片,但我需要更多代表!