我刚刚完成用张量流写入神经网络 附加代码:
import tensorflow as tensorFlow
import csv
# read data from csv
file = open('stub.csv')
reader = csv.reader(file)
temp = list(reader)
del temp[0]
# change data from string to float (Tensorflow)
# create data & goal lists
data = []
goal = []
for i in range(len(temp)):
data.append(map(float, temp[i]))
goal.append([data[i][6], 0.0])
del data[i][6]
# change lists to tuple
data = tuple(tuple(x) for x in data)
goal = tuple(goal)
# create training data and test data by 70-30
a = int(len(data) * 0.6) # training set 60%
b = int(len(data) * 0.8) # validation & test: each one is 20%
trainData = data[0:a] # 60%
validationData = data[b: len(data)]
testData = data[a: b] # 20%
trainGoal = goal[0:a]
validationGoal = goal[b:len(data)]
testGoal = goal[a: b]
numberOfLayers = 500
nodesLayer = []
# define the numbers of nodes in hidden layers
for i in range(numberOfLayers):
nodesLayer.append(500)
# define our goal class
classes = 2
batchSize = 2000
# x for input, y for output
sizeOfRow = len(data[0])
x = tensorFlow.placeholder(dtype= tensorFlow.float32, shape=[None, sizeOfRow])
y = tensorFlow.placeholder(dtype= tensorFlow.float32, shape=[None, classes])
hiddenLayers = []
layers = []
def neuralNetworkModel(x):
# first step: (input * weights) + bias, linear operation like y = ax + b
# each layer connection to other layer will represent by nodes(i) * nodes(i+1)
for i in range(0,numberOfLayers):
if i == 0:
hiddenLayers.append({"weights": tensorFlow.Variable(tensorFlow.random_normal([sizeOfRow, nodesLayer[i]])),
"biases": tensorFlow.Variable(tensorFlow.random_normal([nodesLayer[i]]))})
elif i > 0 and i < numberOfLayers-1:
hiddenLayers.append({"weights" : tensorFlow.Variable(tensorFlow.random_normal([nodesLayer[i], nodesLayer[i+1]])),
"biases" : tensorFlow.Variable(tensorFlow.random_normal([nodesLayer[i+1]]))})
else:
outputLayer = {"weights": tensorFlow.Variable(tensorFlow.random_normal([nodesLayer[i], classes])),
"biases": tensorFlow.Variable(tensorFlow.random_normal([classes]))}
# create the layers
for i in range(numberOfLayers):
if i == 0:
layers.append(tensorFlow.add(tensorFlow.matmul(x, hiddenLayers[i]["weights"]), hiddenLayers[i]["biases"]))
layers.append(tensorFlow.nn.relu(layers[i])) # pass values to activation function (i.e sigmoid, softmax) and add it to the layer
elif i >0 and i < numberOfLayers-1:
layers.append(tensorFlow.add(tensorFlow.matmul(layers[i-1], hiddenLayers[i]["weights"]), hiddenLayers[i]["biases"]))
layers.append(tensorFlow.nn.relu(layers[i]))
output = tensorFlow.matmul(layers[numberOfLayers-1], outputLayer["weights"]) + outputLayer["biases"]
return output
def neuralNetworkTrain(data, x, y):
prediction = neuralNetworkModel(x)
# using softmax function, normalize values to range(0,1)
cost = tensorFlow.reduce_mean(tensorFlow.nn.softmax_cross_entropy_with_logits(prediction, y))
# minimize the cost function
# using AdamOptimizer algorithm
optimizer = tensorFlow.train.AdadeltaOptimizer().minimize(cost)
epochs = 2 # feed machine forward + backpropagation = epoch
# build sessions and train the model
with tensorFlow.Session() as sess:
sess.run(tensorFlow.initialize_all_variables())
for epoch in range(epochs):
epochLoss = 0
i = 0
for _ in range(int(len(data) / batchSize)):
ex, ey = nextBatch(i) # takes 500 examples
i += 1
feedDict = {x :ex, y:ey }
_, cos = sess.run([optimizer,cost], feed_dict= feedDict) # start session to optimize the cost function
epochLoss += cos
print("Epoch", epoch + 1, "completed out of", epochs, "loss:", epochLoss)
correct = tensorFlow.equal(tensorFlow.argmax(prediction,1), tensorFlow.argmax(y, 1))
accuracy = tensorFlow.reduce_mean(tensorFlow.cast(correct, "float"))
print("Accuracy:", accuracy.eval({ x: trainData, y:trainGoal}))
# takes 500 examples each iteration
def nextBatch(num):
# Return the next `batch_size` examples from this data set.
# case: using our data & batch size
num *= batchSize
if num < (len(data) - batchSize):
return data[num: num+batchSize], goal[num: num +batchSize]
neuralNetworkTrain(trainData, x, y)
每个时代(迭代)我都得到了损失函数的值并且都是好的。 现在我想在我的验证/测试集上尝试它。 现在有人应该怎么做?
由于
答案 0 :(得分:1)
如果您想对受过训练的数据进行预测,您可以简单地输入以下内容:
var samlStrategy = new passportSaml.Strategy({
...
//--- Service Provider Certificate
privateCert : {
key : fs.readFileSync('./certificats/mydomain.key', 'utf-8'),
passphrase : 'strong passphrase'
},
...
},
(req, profile, done) => {
...
});
...在图表中,已将测试数据加载到tf_p = tf.nn.softmax(prediction)
。然后用以下方法评估预测:
x_test
在[p] = session.run([tf_p], feed_dict = {
x : x_test,
y : y_test
}
)
方法的最后,您应该最终将它们放在neuralNetworkTrain
中。
p
:或者,您可以使用tf.train.Saver
对象来保存和恢复(并可选择保留)模型。为此,您可以在初始化所有变量后创建一个保护程序:
tf.train.Saver
然后在...
tf.initialize_all_variables().run()
saver = tf.train.Saver()
...
方法结束后,在完成培训后保存:
neuralNetworkTrain
然后构建一个新的评估图,并在测试数据上运行之前恢复模型:
...
model_path = saver.save(sess)
而且,# Load test dataset into X_test
...
tf_x = tf.constant(X_test)
tf_p = tf.nn.softmax(neuralNetworkModel(tf_x))
with tf.Session() as session:
tf.initialize_all_variables().run()
saver.restore(session, model_path)
p = tf_p.eval()
应该再次包含测试数据集的softmax激活。
(我实际上并没有运行这段代码,但它应该让你知道如何实现它。)