我创建了一个堆积图表 我的数据看起来像这样:
[{probability: 0.12 , impact: 27 },
{probability: 0.22 , impact: 27 },
{probability: 0.44 , impact: 27 },
{probability: 0.12 , impact: 28 },
{probability: 0.31 , impact: 28 },
{probability: 0.41 , impact: 28 },
...]
影响在X轴上,在Y轴上的概率。
同一轴X上有许多数据。我必须计算同一X轴的Y轴分量之间的差异。
[{"coordinate":0.027215999999999997,"probability":0.027215999999999997,"impact":23,"stackNumber":0},
{"coordinate":0.01701,"probability":0.01701,"impact":24,"stackNumber":0},
{"coordinate":0.055566000000000004,"probability":0.072576,"impact":24,"stackNumber":1},
{"coordinate":0.015119999999999998,"probability":0.015119999999999998,"impact":25,"stackNumber":0},
{"coordinate":0.03024,"probability":0.04536,"impact":25,"stackNumber":1},
{"coordinate":0.00945,"probability":0.00945,"impact":26,"stackNumber":0},
{"coordinate":0.013229999999999999,"probability":0.02268,"impact":26,"stackNumber":1},
{"coordinate":0.017639999999999996,"probability":0.040319999999999995,"impact":26,"stackNumber":2},
{"coordinate":0.014175,"probability":0.014175,"impact":27,"stackNumber":0},
{"coordinate":0.011024999999999997,"probability":0.025199999999999997,"impact":27,"stackNumber":1},
{"coordinate":0.02016,"probability":0.04536,"impact":27,"stackNumber":2},
{"coordinate":0.015120000000000001,"probability":0.06048,"impact":27,"stackNumber":3},
... ]
对于这些数据,我构建了一个维度
this.demansion = crossData.dimension(function(d) {
return d.impact
});
和n组
for(let i = 0; i<=this.maxIndex; i++) {
this.groups.push(this.demansion.group().reduceSum(function(d) {
return d.stackNumber === i ? d.coordinate : 0
}))
}
并建立了一个图表
barChart
.dimension(this.demansion)
.group(this.groups[0])
.width(document.getElementById('main-card').offsetWidth*0.9)
.height(480)
.y(d3.scaleLinear().domain([0,self.maxY]))
.x(d3.scaleLinear().domain([0,45]))
.centerBar(true)
.renderHorizontalGridLines(true)
for(let i = 1; i<this.maxIndex; i++) {
this.barChart.stack(this.groups[i]);
}
现在我需要根据其值概率设置堆栈中每个元素的颜色,但是在colorAccessor(function(d) { })
我有&#34;坐标&#34;值。
在colorAccessor中获取实际概率值需要什么?
答案 0 :(得分:1)
执行此操作的最佳方法可能是减少coordinate
和probability
。
我认为reductio会让这更容易,但使用原始的Crossfilter,这看起来像是:
for(let i = 0; i<=this.maxIndex; i++) {
this.groups.push(this.demansion.group().reduce(
function(p, v) { // add
if(v.stackNumber === i) {
p.coordinate += v.coordinate;
p.probability += v.probability;
}
return p;
},
function(p, v) { // delete
if(v.stackNumber === i) {
p.coordinate -= v.coordinate;
p.probability -= + v.probability;
}
return p;
},
function() { // initialize
return {coordinate: 0, probability: 0};
}));
}
然后你添加一个值访问器和颜色访问器,如下所示:
barChart
.valueAccessor(function(d) { return d.value.coordinate; })
.colorAccessor(function(d) { return d.value.probability; })