使用多处理时克服内存限制

时间:2016-11-16 21:21:45

标签: python multiprocessing

我正在使用进化算法(CMAES)进行函数优化。为了更快地运行它我正在使用多处理模块。我需要优化的函数在下面的代码中将大矩阵作为输入(input_A_Opt, and input_B_Opt)

它们的大小是几GB。当我在没有多处理的情况下运行该函数时,它运行良好。当我使用多处理时,内存似乎存在问题。如果我使用小输入运行它运行良好,但当我使用完整输入运行时,我收到以下错误:

File "<ipython-input-2-bdbae5b82d3c>", line 1, in <module>
opt.myFuncOptimization()

File "/home/joe/Desktop/optimization_folder/Python/Optimization.py", line 45, in myFuncOptimization
**f_values = pool.map_async(partial_function_to_optmize, solutions).get()**
File "/usr/lib/python3.5/multiprocessing/pool.py", line 608, in get
raise self._value
  File "/usr/lib/python3.5/multiprocessing/pool.py", line 385, in _handle_tasks
put(task)
File "/usr/lib/python3.5/multiprocessing/connection.py", line 206, in send
self._send_bytes(ForkingPickler.dumps(obj))

File "/usr/lib/python3.5/multiprocessing/connection.py", line 393, in _send_bytes
header = struct.pack("!i", n)

error: 'i' format requires -2147483648 <= number <= 2147483647

这里是代码的简化版本(再次,如果我使用输入10倍的输入运行它,一切正常):

import numpy as np
import cma
import multiprocessing as mp
import functools
import myFuncs
import hdf5storage



def myFuncOptimization ():

    temp = hdf5storage.loadmat('/home/joe/Desktop/optimization_folder/matlab_workspace_for_optimization')    

    input_A_Opt  = temp["input_A"]
    input_B_Opt  = temp["input_B"]

    del temp

    numCores = 20

    # Inputs
   #________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
    P0 = np.array([            4.66666667, 2.5,    2.66666667, 4.16666667, 0.96969697,     1.95959596,     0.44088176,     0.04040404,     6.05210421,     0.58585859,     0.46464646,         8.75751503,         0.16161616,             1.24248497,         1.61616162,                 1.56312625,         5.85858586,                 0.01400841, 1.0,            2.4137931,      0.38076152, 2.5,    1.99679872      ])
    LBOpt = np.array([         0.0,        0.0,    0.0,        0.0,        0.0,            0.0,            0.0,            0.0,            0.0,            0.0,            0.0,                0.0,                0.0,                    0.0,                0.0,                        0.0,                0.0,                        0.0,        0.0,            0.0,            0.0,        0.0,    0.0,            ])
    UBOpt = np.array([         10.0,       10.0,   10.0,       10.0,       10.0,           10.0,           10.0,           10.0,           10.0,           10.0,           10.0,               10.0,               10.0,                   10.0,               10.0,                       10.0,               10.0,                       10.0,       10.0,           10.0,           10.0,       10.0,   10.0,           ])
    initialStdsOpt = np.array([2.0,        2.0,    2.0,        2.0,        2.0,            2.0,            2.0,            2.0,            2.0,            2.0,            2.0,                2.0,                2.0,                    2.0,                2.0,                        2.0,                2.0,                        2.0,        2.0,            2.0,            2.0,        2.0,    2.0,            ])
    minStdsOpt = np.array([    0.030,      0.40,   0.030,      0.40,       0.020,          0.020,          0.020,          0.020,          0.020,          0.020,          0.020,              0.020,              0.020,                  0.020,              0.020,                      0.020,              0.020,                      0.020,      0.050,          0.050,          0.020,      0.40,   0.020,          ]) 

    options = {'bounds':[LBOpt,UBOpt], 'CMA_stds':initialStdsOpt, 'minstd':minStdsOpt, 'popsize':numCores}
    es = cma.CMAEvolutionStrategy(P0, 1, options)

    pool = mp.Pool(numCores)

    partial_function_to_optmize = functools.partial(myFuncs.func1, input_A=input_A_Opt, input_B=input_B_Opt)

    while not es.stop():
        solutions = es.ask(es.popsize)            
        f_values = pool.map_async(partial_function_to_optmize, solutions).get()   
        es.tell(solutions, f_values)
        es.disp(1)
        es.logger.add()

    return es.result_pretty()

有关如何解决此问题的任何建议?我没有正确编码(新的python)或者我应该使用其他多处理软件包如scoop?

1 个答案:

答案 0 :(得分:0)

您的对象太大而无法在进程之间传递。你的传递超过2147483647个字节 - 超过2GB!该协议不是为此而制定的,序列化和反序列化这些大块数据的绝对开销可能是一个严重的性能开销。

减少传递给每个进程的数据大小。如果工作流允许,请在单独的过程中读取数据,并仅传递结果。