我使用SparkML TF-IDF算法获得一些特征向量。现在我想在“idfFeatures”列中获取Vector。
我的代码是:
$('#table').find('tr').each(function(){
$(this).find('td').eq(x).after('<td> </td>');
});
控制台中有一个错误:
val vectors = allDF.select("idfFeatures").map{
case Row(vector: Vector) =>
vector
}
vectors.foreach(println(_))
如果我将Vector更改为String,则还有另一个错误:
Error:(38, 24) type Vector takes type parameters
case Row(vector: Vector) =>
^
我如何获得Vector?
答案 0 :(得分:1)
Spark 1.x:
import org.apache.spark.mllib.linalg.Vector
Spark 2.0:
import org.apache.spark.ml.linalg.Vector
示例:
// https://spark.apache.org/docs/latest/ml-features.html#tf-idf
import org.apache.spark.ml.feature.{HashingTF, IDF, Tokenizer}
val sentenceData = spark.createDataFrame(Seq(
(0, "Hi I heard about Spark"),
(0, "I wish Java could use case classes"),
(1, "Logistic regression models are neat")
)).toDF("label", "sentence")
val tokenizer = new Tokenizer().setInputCol("sentence").setOutputCol("words")
val wordsData = tokenizer.transform(sentenceData)
val hashingTF = new HashingTF()
.setInputCol("words").setOutputCol("rawFeatures").setNumFeatures(20)
val featurizedData = hashingTF.transform(wordsData)
val idf = new IDF().setInputCol("rawFeatures").setOutputCol("features")
val idfModel = idf.fit(featurizedData)
val idf = new IDF().setInputCol("rawFeatures").setOutputCol("features")
val idfModel = idf.fit(featurizedData)
val rescaledData = idfModel.transform(featurizedData)
import org.apache.spark.ml.linalg.Vector
import org.apache.spark.sql.Row
rescaledData.select("features").rdd.map { case Row(v: Vector) => v}.first