我最近看到这种错误很不错:
Error:
Tactic failure: setoid rewrite failed: Unable to satisfy the following constraints:
UNDEFINED EVARS:
?X1700==[R M Re Rplus Rmult Rzero Rone Rnegate Me Mop Munit Mnegate sm H c
intermediate H0 |- relation M] (internal placeholder) {?r}
?X1701==[R M Re Rplus Rmult Rzero Rone Rnegate Me Mop Munit Mnegate sm H c
intermediate H0 (do_subrelation:=do_subrelation)
|- Proper
(equiv ==>
?X1700@{__:=R; __:=M; __:=Re; __:=Rplus; __:=Rmult; __:=Rzero;
__:=Rone; __:=Rnegate; __:=Me; __:=Mop; __:=Munit;
__:=Mnegate; __:=sm; __:=H; __:=c; __:=intermediate;
__:=H0}) (sm c)] (internal placeholder) {?p}
?X1705==[R M Re Rplus Rmult Rzero Rone Rnegate Me Mop Munit Mnegate sm H c
intermediate H0 |- relation M] (internal placeholder) {?r0}
?X1706==[R M Re Rplus Rmult Rzero Rone Rnegate Me Mop Munit Mnegate sm H c
intermediate H0 |- relation M] (internal placeholder) {?r1}
?X1707==[R M Re Rplus Rmult Rzero Rone Rnegate Me Mop Munit Mnegate sm H c
intermediate H0 (do_subrelation:=do_subrelation)
|- Proper
(?X1700@{__:=R; __:=M; __:=Re; __:=Rplus; __:=Rmult; __:=Rzero;
__:=Rone; __:=Rnegate; __:=Me; __:=Mop; __:=Munit;
__:=Mnegate; __:=sm; __:=H; __:=c; __:=intermediate;
__:=H0} ==>
?X1706@{__:=R; __:=M; __:=Re; __:=Rplus; __:=Rmult; __:=Rzero;
__:=Rone; __:=Rnegate; __:=Me; __:=Mop; __:=Munit;
__:=Mnegate; __:=sm; __:=H; __:=c; __:=intermediate;
__:=H0} ==>
?X1705@{__:=R; __:=M; __:=Re; __:=Rplus; __:=Rmult; __:=Rzero;
__:=Rone; __:=Rnegate; __:=Me; __:=Mop; __:=Munit;
__:=Mnegate; __:=sm; __:=H; __:=c; __:=intermediate;
__:=H0}) sg_op] (internal placeholder) {?p0}
?X1708==[R M Re Rplus Rmult Rzero Rone Rnegate Me Mop Munit Mnegate sm H c
intermediate H0
|- ProperProxy
?X1706@{__:=R; __:=M; __:=Re; __:=Rplus; __:=Rmult; __:=Rzero;
__:=Rone; __:=Rnegate; __:=Me; __:=Mop; __:=Munit;
__:=Mnegate; __:=sm; __:=H; __:=c; __:=intermediate;
__:=H0} (- sm c mon_unit)] (internal placeholder) {?p1}
?X1710==[R M Re Rplus Rmult Rzero Rone Rnegate Me Mop Munit Mnegate sm H c
intermediate H0 |- relation M] (internal placeholder) {?r2}
?X1711==[R M Re Rplus Rmult Rzero Rone Rnegate Me Mop Munit Mnegate sm H c
intermediate H0 (do_subrelation:=do_subrelation)
|- Proper
(?X1705@{__:=R; __:=M; __:=Re; __:=Rplus; __:=Rmult; __:=Rzero;
__:=Rone; __:=Rnegate; __:=Me; __:=Mop; __:=Munit;
__:=Mnegate; __:=sm; __:=H; __:=c; __:=intermediate;
__:=H0} ==>
?X1710@{__:=R; __:=M; __:=Re; __:=Rplus; __:=Rmult; __:=Rzero;
__:=Rone; __:=Rnegate; __:=Me; __:=Mop; __:=Munit;
__:=Mnegate; __:=sm; __:=H; __:=c; __:=intermediate;
__:=H0} ==> flip impl) equiv] (internal placeholder) {?p2}
?X1712==[R M Re Rplus Rmult Rzero Rone Rnegate Me Mop Munit Mnegate sm H c
intermediate H0
|- ProperProxy
?X1710@{__:=R; __:=M; __:=Re; __:=Rplus; __:=Rmult; __:=Rzero;
__:=Rone; __:=Rnegate; __:=Me; __:=Mop; __:=Munit;
__:=Mnegate; __:=sm; __:=H; __:=c; __:=intermediate;
__:=H0} mon_unit] (internal placeholder) {?p3}
.
试图告诉我这是什么错误?作为参考,我最近在以下引理的工作中看到了这一点:
From MathClasses.interfaces Require Import
abstract_algebra vectorspace canonical_names.
From MathClasses.theory Require Import groups.
Lemma mult_munit `{Module R M} : forall c : R, sm c mon_unit = mon_unit.
intros.
rewrite <- right_identity.
assert (intermediate : mon_unit = sm c mon_unit & - sm c mon_unit).
{
rewrite right_inverse; reflexivity.
}
rewrite intermediate at 2.
rewrite associativity.
rewrite <- distribute_l.
assert (forall x y : M, x = y -> x & sm c mon_unit = y & sm c mon_unit).
{
intros.
rewrite H0.
reflexivity.
}
rewrite right_identity.
我在使用数学类库进行校对时经常会看到这一点。
答案 0 :(得分:3)
错误消息给我们提示:
|- Proper (equiv ==> ...
。
重写失败,因为scalar_mult
函数(其表示法为·
)缺少一个非常重要的属性:它 not Proper
。
Proper
函数是一个尊重等价的函数 - 记住Math-Classes库中的所有内容都定义为等价,甚至=
是equiv
的符号,而不是{{3} }。
更正式地说,如果对于任何等效的f
和x
(x'
,在Math-Classes用语中),(一元)函数x = x'
正确, x
和x'
的图片也相同:f x = f x'
。
当Proper
不是“独立”变量时,我们需要此x
属性才能将x'
重写为x
,但f
适用于它。
修复错误的一种方法是在Module
类型类的定义中添加一个附加字段:
sm_proper :> Proper ((=) ==> (=) ==> (=)) (·)
上面说(·)
是一个二元函数,它尊重两个参数的等价性。
喜欢这个
Class Module (R M : Type)
{Re Rplus Rmult Rzero Rone Rnegate}
{Me Mop Munit Mnegate}
{sm : ScalarMult R M}
:=
{ lm_ring :>> @Ring R Re Rplus Rmult Rzero Rone Rnegate
; lm_group :>> @AbGroup M Me Mop Munit Mnegate
; lm_distr_l :> LeftHeteroDistribute (·) (&) (&)
; lm_distr_r :> RightHeteroDistribute (·) (+) (&)
; lm_assoc :> HeteroAssociative (·) (·) (·) (.*.)
; lm_identity :> LeftIdentity (·) 1
; sm_proper :> Proper ((=) ==> (=) ==> (=)) (·) (* new! *)
}.
E.g。 SemiGroup
&
有一个类似的字段:
Class SemiGroup {Aop: SgOp A} : Prop :=
{ sg_setoid :> Setoid A
; sg_ass :> Associative (&)
; sg_op_proper :> Proper ((=) ==> (=) ==> (=)) (&) }.
在修改之后,一切都应该有效:
Lemma mult_munit `{Module R M} :
forall c : R, c · mon_unit = mon_unit.
Proof.
intro c.
rewrite <- right_identity.
assert (intermediate : mon_unit = c · mon_unit & - (c · mon_unit)) by
now rewrite right_inverse.
rewrite intermediate at 2.
rewrite associativity.
rewrite <- distribute_l.
rewrite right_identity.
apply right_inverse.
Qed.
我必须补充说还有另一种方法可以证明引理,但是Coq不知道怎么找不到LeftCancellation
类型的实例而没有轻推(显然这个定律适用于每个组,而MathClasses.theory.groups
是进口):
intro c.
enough ((c · mon_unit) & (c · mon_unit) = c · mon_unit & mon_unit).
apply (left_cancellation (&)) in H0.
assumption.
Print Instances LeftCancellation. (* ! *)
apply LeftCancellation_instance_0. (* this is ugly, but Coq doesn't use this instance, defined in MathClasses.theory.groups *)
rewrite <- distribute_l.
now rewrite !right_identity.
以下是完整的开发项目:
From MathClasses.interfaces
Require Import abstract_algebra orders.
From MathClasses.theory
Require Import groups.
(** Scalar multiplication function class *)
Class ScalarMult K V := scalar_mult: K → V → V.
Instance: Params (@scalar_mult) 3.
Infix "·" := scalar_mult (at level 50) : mc_scope.
Notation "(·)" := scalar_mult (only parsing) : mc_scope.
Notation "( x ·)" := (scalar_mult x) (only parsing) : mc_scope.
Notation "(· x )" := (λ y, y · x) (only parsing) : mc_scope.
(** The inproduct function class *)
Class Inproduct K V := inprod : V → V → K.
Instance: Params (@inprod) 3.
Notation "⟨ u , v ⟩" := (inprod u v) (at level 51) : mc_scope.
Notation "⟨ u , ⟩" := (λ v, ⟨u,v⟩) (at level 50, only parsing) : mc_scope.
Notation "⟨ , v ⟩" := (λ u, ⟨u,v⟩) (at level 50, only parsing) : mc_scope.
Notation "x ⊥ y" := (⟨x,y⟩ = 0) (at level 70) : mc_scope.
(** The norm function class *)
Class Norm K V := norm : V → K.
Instance: Params (@norm) 2.
Notation "∥ L ∥" := (norm L) (at level 50) : mc_scope.
Notation "∥·∥" := norm (only parsing) : mc_scope.
(** Let [M] be an R-Module. *)
Class Module (R M : Type)
{Re Rplus Rmult Rzero Rone Rnegate}
{Me Mop Munit Mnegate}
{sm : ScalarMult R M}
:=
{ lm_ring :>> @Ring R Re Rplus Rmult Rzero Rone Rnegate
; lm_group :>> @AbGroup M Me Mop Munit Mnegate
; lm_distr_l :> LeftHeteroDistribute (·) (&) (&)
; lm_distr_r :> RightHeteroDistribute (·) (+) (&)
; lm_assoc :> HeteroAssociative (·) (·) (·) (.*.)
; lm_identity :> LeftIdentity (·) 1
; sm_proper :> Proper ((=) ==> (=) ==> (=)) (·)
}.
Lemma mult_munit `{Module R M} :
forall c : R, c · mon_unit = mon_unit.
Proof.
intro c.
rewrite <- right_identity.
assert (intermediate : mon_unit = c · mon_unit & - (c · mon_unit)) by
now rewrite right_inverse.
rewrite intermediate at 2.
rewrite associativity.
rewrite <- distribute_l.
rewrite right_identity.
apply right_inverse.
(* alternative proof, which doesn't quite work *)
Restart.
intro c.
enough ((c · mon_unit) & (c · mon_unit) = c · mon_unit & mon_unit).
apply (left_cancellation (&)) in H0.
assumption.
Print Instances LeftCancellation.
apply LeftCancellation_instance_0.
rewrite <- distribute_l.
now rewrite !right_identity.
Qed.
答案 1 :(得分:1)
事实证明,这确实是一个奇怪的怪癖:答案在于我使用的Proper
实例仅明确引用了sm
,而没有使用点符号({{1} })。当我将其更改为Anton上面使用的符号时,它可以正常工作。我会立即向数学课提出拉动请求。
编辑:这个github问题提供了一个很好的解释:https://github.com/c-corn/corn/issues/35