如何对负数之前的正数进行排序,并且值分别排序?

时间:2016-11-15 22:23:33

标签: python list sorting

我有一个包含正数和负数混合的列表,如下所示

lst = [1, -2, 10, -12, -4, -5, 9, 2]

我想要完成的是用负数前面的正数对列表进行排序,也分别排序。

期望的输出:

[1, 2, 9, 10, -12, -5, -4, -2]

我能够找出第一部分排序,其中正数和负数之前,不幸的是,这并没有分别对正数和负数进行排序。

lst = [1, -2, 10, -12, -4, -5, 9, 2]
lst = sorted(lst, key=lambda o: not abs(o) == o)
print(lst)

>>> [1, 10, 2, 9, -2, -12, -4, -5]

如何使用pythonic解决方案实现所需的排序?

11 个答案:

答案 0 :(得分:62)

您可以使用常规排序,然后在0:

处将列表二等分
>>> lst
[1, -2, 10, -12, -4, -5, 9, 2]
>>> from bisect import bisect
>>> lst.sort()
>>> i = bisect(lst, 0)  # use `bisect_left` instead if you want zeroes first
>>> lst[i:] + lst[:i]
[1, 2, 9, 10, -12, -5, -4, -2]

此处的最后一行利用切片不变lst == lst[:n] + lst[n:]

另一个选择是使用元组作为排序键,并依赖元组的lexicographical顺序:

>>> sorted(lst, key=lambda x: (x<0, x))  # use <= instead if you want zeroes last
[1, 2, 9, 10, -12, -5, -4, -2]

答案 1 :(得分:9)

只是比较不同的方式。

结果:

> Shuffle cost comparison small
shuffle_lst: 0.001181483967229724
shuffle_ar: 0.014688121969811618
> Shuffle cost comparison medium
shuffle_lst: 0.572294642101042
shuffle_ar: 0.3266364939045161
> Shuffle cost comparison large
shuffle_lst: 26.5786890439922
shuffle_ar: 6.284286553971469

                    +cost               -cost
bisectme:    0.004252934013493359    0.003071450046263635
lexicon:     0.010936842067167163    0.009755358099937439
compreh.:    0.0071560649666935205   0.005974580999463797
arrayme:     0.03787591797299683     0.023187796003185213
nplexicon:   0.022204622975550592    0.007516501005738974
npbisect:    0.023507782025262713    0.008819660055451095

                    +cost               -cost
bisectme:    7.716002315981314   7.143707673880272
lexicon:     22.17862514301669   21.606330500915647
compreh.:    8.690494343056343   8.118199700955302
arrayme:     1.5029839979251847      1.1763475040206686
nplexicon:   2.0811527019832283      1.7545162080787122
npbisect:    1.3076487149810418      0.9810122210765257

                    +cost               -cost
bisectme:    180.77819497592282      154.19950593193062
arrayme:     22.476932613993995      16.192646060022525
nplexicon:   41.74795828794595   35.46367173397448
npbisect:    20.13856932707131   13.85428277309984

代码:

import sys
import numpy as np
from timeit import timeit
from bisect import bisect
from random import shuffle

def shuffle_lst():
    np.random.shuffle(lst)

def shuffle_ar():
    np.random.shuffle(ar)

def bisectme():
    np.random.shuffle(lst)
    lst.sort()
    i = bisect(lst, 0)
    return lst[i:] + lst[:i]

def lexicon():
    np.random.shuffle(lst)
    return sorted(lst, key=lambda x: (x < 0, x))

def comprehension():
    np.random.shuffle(lst)
    return sorted([i for i in lst if i > 0]) + sorted([i for i in lst if i < 0])

def arrayme():
    np.random.shuffle(ar)
    return np.concatenate([np.sort(ar[ar >= 0]), np.sort(ar[ar < 0])], axis=0)

def nplexicon():
    np.random.shuffle(ar)
    return ar[np.lexsort((ar, ar < 0))]

def numpybisect():
    np.random.shuffle(ar)
    ar.sort()
    i = ar.__abs__().argmin()
    return np.concatenate((ar[i:], ar[:i]))


nloops = 1000

lst = list(range(-10**1, 0, 1)) + list(range(10**1, -1, -1))
ar = np.array(lst)
print("> Shuffle cost comparison small")
cost_shuffle_list_small = timeit(shuffle_lst, number=nloops)
print("shuffle_lst:", cost_shuffle_list_small)
cost_shuffle_array_small = timeit(shuffle_ar, number=nloops)
print("shuffle_ar:", cost_shuffle_array_small)

lst = list(range(-10**4, 0, 1)) + list(range(10**4, -1, -1))
ar = np.array(lst)
print("> Shuffle cost comparison medium")
cost_shuffle_list_medium = timeit(shuffle_lst, number=nloops)
print("shuffle_lst:", cost_shuffle_list_medium)
cost_shuffle_array_medium = timeit(shuffle_ar, number=nloops)
print("shuffle_ar:", cost_shuffle_array_medium)

nloops = 100

lst = list(range(-10**6, 0, 1)) + list(range(10**6, -1, -1))
ar = np.array(lst)
print("> Shuffle cost comparison large")
cost_shuffle_list_large = timeit(shuffle_lst, number=nloops)
print("shuffle_lst:", cost_shuffle_list_large)
cost_shuffle_array_large = timeit(shuffle_ar, number=nloops)
print("shuffle_ar:", cost_shuffle_array_large)

print()

nloops = 1000

## With small lists/arrays
lst = list(range(-10**1, 0, 1)) + list(range(10**1, -1, -1))
ar = np.array(lst)

print("\t\t\t\t\tw/o pen.\t\t\t\tw. pen.")

foo = timeit(bisectme, number=nloops)
print("bisectme:\t", foo, "\t", foo - cost_shuffle_list_small)

foo = timeit(lexicon, number=nloops)
print("lexicon:\t", foo, "\t", foo - cost_shuffle_list_small)

foo = timeit(comprehension, number=nloops)
print("compreh.:\t", foo, "\t", foo - cost_shuffle_list_small)

foo = timeit(arrayme, number=nloops)
print("arrayme:\t", foo, "\t", foo - cost_shuffle_array_small)

foo = timeit(nplexicon, number=nloops)
print("nplexicon:\t", foo, "\t", foo - cost_shuffle_array_small)

foo = timeit(numpybisect, number=nloops)
print("npbisect:\t", foo, "\t",  foo - cost_shuffle_array_small)

print()

## With medium lists/arrays
lst = list(range(-10**4, 0, 1)) + list(range(10**4, -1, -1))
ar = np.array(lst)

print("\t\t\t\t\tw/o cost\t\t\t\tw. cost")

foo = timeit(bisectme, number=nloops)
print("bisectme:\t", foo, "\t", foo - cost_shuffle_list_medium)

foo = timeit(lexicon, number=nloops)
print("lexicon:\t", foo, "\t", foo - cost_shuffle_list_medium)

foo = timeit(comprehension, number=nloops)
print("compreh.:\t", foo, "\t", foo - cost_shuffle_list_medium)

foo = timeit(arrayme, number=nloops)
print("arrayme:\t", foo, "\t", foo - cost_shuffle_array_medium)

foo = timeit(nplexicon, number=nloops)
print("nplexicon:\t", foo, "\t", foo - cost_shuffle_array_medium)

foo = timeit(numpybisect, number=nloops)
print("npbisect:\t", foo, "\t",  foo - cost_shuffle_array_medium)

print()


## With large lists/arrays
nloops = 100

lst = list(range(-10**6, 0, 1)) + list(range(10**6, -1, -1))
ar = np.array(lst)

print("\t\t\t\t\tw/o cost\t\t\t\tw. cost")

foo = timeit(bisectme, number=nloops)
print("bisectme:\t", foo, "\t", foo - cost_shuffle_list_large)

foo = timeit(arrayme, number=nloops)
print("arrayme:\t", foo, "\t", foo - cost_shuffle_array_large)

foo = timeit(nplexicon, number=nloops)
print("nplexicon:\t", foo, "\t", foo - cost_shuffle_array_large)

foo = timeit(numpybisect, number=nloops)
print("npbisect:\t", foo, "\t",  foo - cost_shuffle_array_large)

print()

答案 2 :(得分:6)

创建两个列表,一个列表为正值,另一个列表为负值,然后按照您喜欢的方式对每个列表的内容进行排序。例如:

my_list = [1, -2, 10, -12, -4, -5, 9, 2]
pos_list, neg_list = [], []
for item in my_list:
    if item < 0: 
        neg_list.append(item)
    else:
        pos_list.append(item)

final_list = sorted(pos_list) + sorted(neg_list)

答案 3 :(得分:5)

你可以按元素反转的负数排序:

from __future__ import division

sorted(lst, key=lambda i: 0 if i == 0 else -1 / i)

采用反向开关的大小顺序(中间较大的数字,外部较小的数字)。采取负面反转顺序(先是积极,最后是负面)。

请注意您的课程数量,以及是否会导致任何过度或下溢问题。

答案 4 :(得分:4)

创建两个单独的列表。一个正值表示负值。对负面列表进行排序,然后将它们连接在一起:

>>> lst = [1, -2, 10, -12, -4, -5, 9, 2]
>>> sorted([i for i in lst if i > 0]) + sorted([i for i in lst if i =< 0])
[1, 2, 9, 10, -12, -5, -4, -2]
>>> 

答案 5 :(得分:3)

data Nil = Nil
data Cons a = Cons a (List a)
type List a = Cons a :|: Nil

如果您不必使用列表但对numpy数组感到满意,那么您无需支付铸造成本,即

import numpy as np
lst = [1, -2, 10, -12, -4, -5, 9, 2]
ar = np.array(lst)
lst = list(np.concatenate([np.sort(ar[ar >= 0]), np.sort(ar[ar < 0], reverse = True)], axis = 0))
print(lst)

答案 6 :(得分:3)

import numpy as np

l = np.array([1, -2, 10, -12, -4, -5, 9, 2])
l[np.lexsort((l, l < 0))]

array([  1,   2,   9,  10, -12,  -5,  -4,  -2])

答案 7 :(得分:2)

感谢wmin的解决方案(接受的答案)的逻辑,这很棒。因此,为了完整性,对此的类似答案,但基于numpy,除了小列表/数组之外的其他任何事情都明显更快,如下所示:

lst = [1, -2, 10, -12, -4, -5, 9, 2]
ar = np.array(lst)
ar.sort()
i = ar.__abs__().argmin()
np.concatenate((ar[i:], ar[:i]))

答案 8 :(得分:2)

我不知道它是大多数 Pythonic,它当然没有任何铃声和口哨,但IMO是一个清晰易懂的代码:

lst = [1, -2, 10, -12, -4, -5, 9, 2]

pos = list()
neg = list()

for i in lst:
    neg.append(i) if i < 0 else pos.append(i)

print(sorted(pos) + sorted(neg))

答案 9 :(得分:1)

将列表排序两次,如下所示:

lst = [1, -2, 10, -12, -4, -5, 9, 2]
lst.sort()
lst.sort(key=int(0).__gt__)      # key is True for items <= 0

这利用了python sort函数/方法稳定的事实。这意味着具有相同值或键的项目保持相同的顺序。第一种排序将所有项目按从小到大的顺序排列。对于第二种,所有项目&lt; 0得到一个True键,所有项&gt; = 0得到一个False键。因为True(1)&gt;假(0),第二种排序将所有负项移动到最后,而不更改否定项的顺序。

答案 10 :(得分:0)

*这是另一种解决方案:*

lst = [1, -2, 10, -12, -4, -5, 9, 2]  # list of values.
x = sorted(lst) # x : [-12, -5, -4, -2, 1, 2, 9, 10]
k, m = [], []  # k : [1, 2, 9, 10] # M : [-12, -5, -4, -2]
for i in x:
    if i > 0:
        k.append(i)
    else:
        m.append(i)
w = k + m # w : [1, 2, 9, 10, -12, -5, -4, -2]
print(w)