在TensorFlow的seq2seq
模型中,有没有办法可视化某些输入的注意权重,如上面链接中的图(来自Bahdanau等,2014)?我已经找到了TensorFlow's github issue这个问题,但是我无法在会话期间找到如何获取注意力掩码。
答案 0 :(得分:6)
我还希望将Tensorflow seq2seq ops的注意力量可视化为我的文本摘要任务。我认为临时解决方案是使用session.run()来评估上面提到的注意掩码张量。有趣的是,原始的seq2seq.py操作被认为是遗留版本,并且无法在github中轻松找到,因此我只使用了0.12.0滚轮分发中的seq2seq.py文件并对其进行了修改。为了绘制热图,我使用了'Matplotlib'包,非常方便。
我修改了以下代码: https://github.com/rockingdingo/deepnlp/tree/master/deepnlp/textsum#attention-visualization
# Find the attention mask tensor in function attention_decoder()-> attention()
# Add the attention mask tensor to ‘return’ statement of all the function that calls the attention_decoder(),
# all the way up to model_with_buckets() function, which is the final function I use for bucket training.
def attention(query):
"""Put attention masks on hidden using hidden_features and query."""
ds = [] # Results of attention reads will be stored here.
# some code
for a in xrange(num_heads):
with variable_scope.variable_scope("Attention_%d" % a):
# some code
s = math_ops.reduce_sum(v[a] * math_ops.tanh(hidden_features[a] + y),
[2, 3])
# This is the attention mask tensor we want to extract
a = nn_ops.softmax(s)
# some code
# add 'a' to return function
return ds, a
# modified model.step() function and return masks tensor
self.outputs, self.losses, self.attn_masks = seq2seq_attn.model_with_buckets(…)
# use session.run() to evaluate attn masks
attn_out = session.run(self.attn_masks[bucket_id], input_feed)
attn_matrix = ...
# Use the plot_attention function in eval.py to visual the 2D ndarray during prediction.
eval.plot_attention(attn_matrix[0:ty_cut, 0:tx_cut], X_label = X_label, Y_label = Y_label)
可能在未来,tensorflow将有更好的方法来提取和可视化注意力量图。有什么想法吗?