我有一个如下所示的数据集:
Distance Mean SD Median VI Vegetation.Index Direction X X.1 X.2 X.3
1 10m 0.525 0.082 0.530 NDVI NDVI Whole Landscape NA NA NA NA
2 25m 0.517 0.085 0.523 NDVI NDVI Whole Landscape NA NA NA NA
3 50m 0.509 0.086 0.514 NDVI NDVI Whole Landscape NA NA NA NA
4 100m 0.494 0.090 0.497 NDVI NDVI Whole Landscape NA NA NA NA
5 10m 0.545 0.076 0.551 NDVIe NDVI East NA NA NA NA
6 25m 0.542 0.078 0.549 NDVIe NDVI East NA NA NA NA
> dput(droplevels(head(data)))
structure(list(Distance = structure(c(2L, 3L, 4L, 1L, 2L, 3L), .Label = c("100m",
"10m", "25m", "50m"), class = "factor"), Mean = c(0.525, 0.517,
0.509, 0.494, 0.545, 0.542), SD = c(0.082, 0.085, 0.086, 0.09,
0.076, 0.078), Median = c(0.53, 0.523, 0.514, 0.497, 0.551, 0.549
), VI = structure(c(1L, 1L, 1L, 1L, 2L, 2L), .Label = c("NDVI",
"NDVIe"), class = "factor"), Vegetation.Index = structure(c(1L,
1L, 1L, 1L, 1L, 1L), .Label = "NDVI", class = "factor"), Direction = structure(c(2L,
2L, 2L, 2L, 1L, 1L), .Label = c("East", "Whole Landscape"), class = "factor"),
X = c(NA, NA, NA, NA, NA, NA), X.1 = c(NA, NA, NA, NA, NA,
NA), X.2 = c(NA, NA, NA, NA, NA, NA), X.3 = c(NA, NA, NA,
NA, NA, NA)), .Names = c("Distance", "Mean", "SD", "Median",
"VI", "Vegetation.Index", "Direction", "X", "X.1", "X.2", "X.3"
), row.names = c(NA, 6L), class = "data.frame")
我想创建一个条形图小平面网格,其中x轴上的分类变量(距离),y轴上的连续变量(植被指数)和每个条形图的两个条形(平均和中位植被指数值) 。酒吧通过方向'和植被指数'。
我用一种措施(平均值)完成了这项工作,如下图所示。
以下是我现在的代码:
p = ggplot(data,aes(x=Distance,y=Mean,fill=Distance)) + geom_bar(stat =
'identity',position='dodge')+ facet_grid(Direction~Vegetation.Index)+
coord_cartesian(ylim=c(0.2,0.95)) + geom_errorbar(data = data,
aes(ymin=Mean-SD,ymax=Mean+SD),width=0.5)
但是我也希望旁边有一个中位数吧。
Like this但是对于构面网格中的所有条形图。
我找到了一些想要做这个或类似事情的人,发现它们非常有用:
但是,我的数据看起来与他们的数据非常不同(我认为)并且以任何方式改变它会弄乱我已经拥有的数据。根据我的理解,我必须使用group =' Mean + Median'。
答案 0 :(得分:2)
使用您的示例数据,我们首先将其转换为长格式。我在这里使用tidyr::gather
,但reshape2::melt
(或data.table::melt
)的工作方式类似。
library(tidyr)
dfl = gather(df, key = measure, value = value, Mean, Median)
dodge_width = 0.8
ggplot(dfl,
aes(x = measure, y = value, fill = Distance, group = Distance)) +
geom_bar(stat = 'identity',
position = position_dodge(dodge_width),
width = dodge_width) +
facet_grid(Direction ~ Vegetation.Index) +
coord_cartesian(ylim = c(0.2, 0.95)) +
geom_errorbar(
aes(ymin = value - SD, ymax = value + SD),
width=0.5,
position = position_dodge(dodge_width)
)