因此,我将字典的数据帧乘以另一个因子数据帧。我想知道如何将从该乘法得到的堆叠数据帧返回到字典的数据框中。
说给定df和df2:
df = pd.DataFrame({'A': [{"ab":1, "b":2, "c":3}, {'b':4, 'c':5, 'ab':6}],
'B': [{"ab":7, "b":8, "c":9}, {'b':10, 'c':11, 'ab':12}]})
A B
0 {'b': 2, 'c': 3, 'ab': 1} {'b': 8, 'c': 9, 'ab': 7}
1 {'b': 4, 'c': 5, 'ab': 6} {'b': 10, 'c': 11, 'ab': 12}
df2 = pd.DataFrame({'A': [2, 3],
'B': [3, 4]})
A B
0 2 3
1 3 4
使用this帮助将它们相乘
In[11]: df.stack().apply(pd.Series)
Out[11]:
ab b c
0 A 1 2 3
B 7 8 9
1 A 6 4 5
B 12 10 11
然后将类似的函数应用于df2以将数据帧作为1xN系列返回
In[12]: ser = pd.Series(df2.stack().apply(pd.Series).reset_index().iloc[:, -1])
In[13]: ser
Out[13]:
0 2
1 3
2 3
3 4
然后使用链接中的函数来乘以数据帧和系列
In[14]: func = lambda x: np.asarray(x) * np.asarray(ser)
In[15]: df.stack().apply(pd.Series).apply(func)
Out[15]:
ab b c
0 A 2 4 6
B 21 24 27
1 A 18 12 15
B 48 40 44
我如何'取消堆放'以上数据帧的格式与df相同?
A B
0 {'b': 4, 'c': 6, 'ab': 2} {'b': 24, 'c': 27, 'ab': 21}
1 {'b': 12, 'c': 15, 'ab': 18} {'b': 40, 'c': 44, 'ab': 48}
答案 0 :(得分:0)
将数据转换为字典。
In[1]: df.to_dict('r')
Out[2]: [{'ab': 2, 'b': 4, 'c': 6},
{'ab': 21, 'b': 24, 'c': 27},
{'ab': 18, 'b': 12, 'c': 15},
{'ab': 24, 'b': 20, 'c': 22},
{'ab': 48, 'b': 40, 'c': 44},
{'ab': 48, 'b': 40, 'c': 44}]
然后使用相应的dict压缩所有级别值,该dict附加到列表
list = []
for x in zip(df.index.get_level_values(0),df.index.get_level_values(1), df.to_dict('r')):
list.append(x)
new = pd.DataFrame(list)
new = new.pivot(index=0, columns=1, values=2)
然后重置多索引并删除新列
new.reset_index().ix[:, 1:]