从pandas df中的列创建一个二元组

时间:2016-11-14 17:10:40

标签: python python-2.7 python-3.x pandas

我在pandas dataframe中有这个测试表

   Leaf_category_id  session_id  product_id
0               111           1         987
3               111           4         987
4               111           1         741
1               222           2         654
2               333           3         321

这是我之前提出的问题的延伸,@ jazrael回答了这个问题。 view answer

所以在获取product_id列中的值之后(只是一个假设,与我上一个问题的输出略有不同,

   |product_id               |
   ---------------------------
   |111,987,741,34,12        |
   |987,1232                 |
   |654,12,324,465,342,324   |
   |321,741,987              |
   |324,654,862,467,243,754  |
   |6453,123,987,741,34,12   |

等等, 我想创建一个新列,其中一行中的所有值都应该作为一个bigram与下一个,最后一个。在行中与第一行结合,例如:

   |product_id               |Bigram
   -------------------------------------------------------------------------
   |111,987,741,34,12        |(111,987),**(987,741)**,(741,34),(34,12),(12,111)
   |987,1232                 |(987,1232),(1232,987)
   |654,12,324,465,342,32    |(654,12),(12,324),(324,465),(465,342),(342,32),(32,654)
   |321,741,987              |(321,741),**(741,987)**,(987,321)
   |324,654,862              |(324,654),(654,862),(862,324)
   |123,987,741,34,12        |(123,987),(987,741),(34,12),(12,123)

忽略**(我稍后会告诉你为什么我主演了这个)

获得二元组的代码是

for i in df.Leaf_category_id.unique(): 
    print (df[df.Leaf_category_id == i].groupby('session_id')['product_id'].apply(lambda x: list(zip(x, x[1:]))).reset_index())

从这个df开始,我想考虑一下bigram列并再创建一个名为frequency的列,它给出了bigram的频率。

  

注*:(987,741)和(741,987)应被视为相同,并且应删除一个公共条目,因此(987,741)的频率应为2。   类似的是(34,12)它发生两次,所以频率应该是2

   |Bigram
   ---------------
   |(111,987),
   |**(987,741)**
   |(741,34)
   |(34,12)
   |(12,111)
   |**(741,987)**
   |(987,321)
   |(34,12)
   |(12,123)

最终结果应该是。

   |Bigram       | frequency |
   --------------------------
   |(111,987)    |  1 
   |(987,741)    |  2
   |(741,34)     |  1
   |(34,12)      |  2
   |(12,111)     |  1
   |(987,321)    |  1
   |(12,123)     |  1

我希望在这里找到答案,请帮助我,我已尽可能详细说明。

2 个答案:

答案 0 :(得分:2)

试试这段代码

from itertools import combinations
import pandas as pd

df = pd.DataFrame.from_csv("data.csv")
#consecutive
grouped_consecutive_product_ids = df.groupby(['Leaf_category_id','session_id'])['product_id'].apply(lambda x: [tuple(sorted(pair)) for pair in zip(x,x[1:])]).reset_index()

df1=pd.DataFrame(grouped_consecutive_product_ids)
s=df1.product_id.apply(lambda x: pd.Series(x)).unstack()
df2=pd.DataFrame(s.reset_index(level=0,drop=True)).dropna()
df2.rename(columns = {0:'Bigram'}, inplace = True)
df2["freq"] = df2.groupby('Bigram')['Bigram'].transform('count')
bigram_frequency_consecutive = df2.drop_duplicates(keep="first").sort_values("Bigram").reset_index()
del bigram_frequency_consecutive["index"]

组合(所有可能的二元组)

from itertools import combinations
import pandas as pd

df = pd.DataFrame.from_csv("data.csv")
#combinations
grouped_combination_product_ids = df.groupby(['Leaf_category_id','session_id'])['product_id'].apply(lambda x: [tuple(sorted(pair)) for pair in combinations(x,2)]).reset_index()

df1=pd.DataFrame(grouped_combination_product_ids)
s=df1.product_id.apply(lambda x: pd.Series(x)).unstack()
df2=pd.DataFrame(s.reset_index(level=0,drop=True)).dropna()
df2.rename(columns = {0:'Bigram'}, inplace = True)
df2["freq"] = df2.groupby('Bigram')['Bigram'].transform('count')
bigram_frequency_combinations = df2.drop_duplicates(keep="first").sort_values("Bigram").reset_index()
del bigram_frequency_combinations["index"]

data.csv包含

Leaf_category_id,session_id,product_id
0,111,1,111
3,111,4,987
4,111,1,741
1,222,2,654
2,333,3,321
5,111,1,87
6,111,1,34
7,111,1,12
8,111,1,987
9,111,4,1232
10,222,2,12
11,222,2,324
12,222,2,465
13,222,2,342
14,222,2,32
15,333,3,321
16,333,3,741
17,333,3,987
18,333,3,324
19,333,3,654
20,333,3,862
21,222,1,123
22,222,1,987
23,222,1,741
24,222,1,34
25,222,1,12

结果bigram_frequency_consecutive将是

         Bigram  freq
0      (12, 34)     2
1     (12, 324)     1
2     (12, 654)     1
3     (12, 987)     1
4     (32, 342)     1
5      (34, 87)     1
6     (34, 741)     1
7     (87, 741)     1
8    (111, 741)     1
9    (123, 987)     1
10   (321, 321)     1
11   (321, 741)     1
12   (324, 465)     1
13   (324, 654)     1
14   (324, 987)     1
15   (342, 465)     1
16   (654, 862)     1
17   (741, 987)     2
18  (987, 1232)     1

结果bigram_frequency_combinations将是

           Bigram  freq
0      (12, 32)     1
1      (12, 34)     2
2      (12, 87)     1
3     (12, 111)     1
4     (12, 123)     1
5     (12, 324)     1
6     (12, 342)     1
7     (12, 465)     1
8     (12, 654)     1
9     (12, 741)     2
10    (12, 987)     2
11    (32, 324)     1
12    (32, 342)     1
13    (32, 465)     1
14    (32, 654)     1
15     (34, 87)     1
16    (34, 111)     1
17    (34, 123)     1
18    (34, 741)     2
19    (34, 987)     2
20    (87, 111)     1
21    (87, 741)     1
22    (87, 987)     1
23   (111, 741)     1
24   (111, 987)     1
25   (123, 741)     1
26   (123, 987)     1
27   (321, 321)     1
28   (321, 324)     2
29   (321, 654)     2
30   (321, 741)     2
31   (321, 862)     2
32   (321, 987)     2
33   (324, 342)     1
34   (324, 465)     1
35   (324, 654)     2
36   (324, 741)     1
37   (324, 862)     1
38   (324, 987)     1
39   (342, 465)     1
40   (342, 654)     1
41   (465, 654)     1
42   (654, 741)     1
43   (654, 862)     1
44   (654, 987)     1
45   (741, 862)     1
46   (741, 987)     3
47   (862, 987)     1
48  (987, 1232)     1

在上述情况下,它由两者分组

答案 1 :(得分:1)

我们将从product_id中提取值,创建已排序并进行重复数据删除的bigrams,并计算它们以获取频率,然后填充数据框。

from collections import Counter

# assuming your data frame is called 'df'

bigrams = [list(zip(x,x[1:])) for x in df.product_id.values.tolist()]
bigram_set = [tuple(sorted(xx) for x in bigrams for xx in x]
freq_dict = Counter(bigram_set)
df_freq = pd.DataFrame([list(f) for f in freq_dict], columns=['bigram','freq'])