通过ARMA_64BIT_WORD定义

时间:2016-11-14 15:16:42

标签: r rcpp

在上一篇文章Large SpMat object with RcppArmadillo中,我决定使用Rcpp来计算一个大矩阵(~600,000行x 11列)

我已安装RcppRcppArmadillo

> sessionInfo()
R version 3.3.1 (2016-06-21)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: OS X 10.11.6 (El Capitan)

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] RcppArmadillo_0.7.500.0.0 Rcpp_0.12.7               cluster_2.0.4             skmeans_0.2-8            
 [5] ggdendro_0.1-20           ggplot2_2.1.0             lsa_0.73.1                SnowballC_0.5.1          
 [9] data.table_1.9.6          jsonlite_1.1              purrr_0.2.2               stringi_1.1.2            
[13] dplyr_0.5.0               plyr_1.8.4 

loaded via a namespace (and not attached):
 [1] assertthat_0.1   slam_0.1-38      MASS_7.3-45      chron_2.3-47     grid_3.3.1       R6_2.2.0         gtable_0.2.0    
 [8] DBI_0.5-1        magrittr_1.5     scales_0.4.0     tools_3.3.1      munsell_0.4.3    clue_0.3-51      colorspace_1.2-7
[15] tibble_1.2 

使用mtcars之类的例子,这非常有效:

library(lsa)    
x <- as.matrix(mtcars)
cosine(t(x))

这是来自cosine的{​​{1}}函数:

lsa

cosR <- function(x) { co <- array(0, c(ncol(x), ncol(x))) ## f <- colnames(x) ## dimnames(co) <- list(f, f) for (i in 2:ncol(x)) { for (j in 1:(i - 1)) { co[i,j] <- crossprod(x[,i], x[,j])/ sqrt(crossprod(x[,i]) * crossprod(x[,j])) } } co <- co + t(co) diag(co) <- 1 return(as.matrix(co)) } 中的等价物就是:

Rcpp

您可以检查两个功能是否等效

library(Rcpp)
library(RcppArmadillo)
cppFunction(depends='RcppArmadillo',
            code="NumericMatrix cosCpp(NumericMatrix Xr) {
            int n = Xr.nrow(), k = Xr.ncol();
            arma::mat X(Xr.begin(), n, k, false); // reuses memory and avoids extra copy
            arma::mat Y = arma::trans(X) * X; // matrix product
            arma::mat res = Y / (arma::sqrt(arma::diagvec(Y)) * arma::trans(arma::sqrt(arma::diagvec(Y))));
            return Rcpp::wrap(res);
           }")

但是当我在加载all.equal(cosCpp(x),cosR(x)) [1] TRUE 后运行我的数据时,我获得了:

Rcpp
更新 解决方案@ Coatless的建议+ @gvegayon发布+小时阅读

我将我的功能修改为:

x <- as.matrix(my_data)
x <- t(my_data)
y <- cosCpp(x)
error: Mat::init(): requested size is too large
Error in eval(substitute(expr), envir, enclos) : 
  Mat::init(): requested size is too large

sourceCpp("/myfolder/my_function.cpp") 的内容为

my_function.cpp

然后我跑

// [[Rcpp::depends(RcppArmadillo)]]
#include <RcppArmadillo.h>
using namespace Rcpp;

// [[Rcpp::export]]
arma::sp_mat cosine_rcpp(
    const arma::mat & X
) {

  int k = X.n_cols;

  arma::sp_mat ans(k,k);

  for (int i=0;i<k;i++)
    for (int j=i;j<k;j++) {
      // X(i) x X(j)' / sqrt(sum(X^2) * sum(Y^2))
      ans.at(i,j) = arma::norm_dot(X.col(i), X.col(j));

    }

    return ans;
}

1 个答案:

答案 0 :(得分:7)

    由于RcppArmadillo目录中的内容,
  1. Rcpp是一个/src唯一的包。要启用C ++ 11,请使用// [[Rcpp::plugins(cpp11)]]
  2. ARMA_64BIT_WORD未定义。要定义它,请在#define ARMA_64BIT_WORD 1之前添加#include <RcppArmadillo.h>
  3. 使用sourceCpp()

    的示例实施
    #define ARMA_64BIT_WORD 1
    #include <RcppArmadillo.h>
    // [[Rcpp::depends(RcppArmadillo)]]
    // [[Rcpp::plugins(cpp11)]] 
    
    // [[Rcpp::export]] 
    arma::mat cosCpp(const arma::mat& X) {
    
        arma::mat Y = arma::trans(X) * X; // matrix product
        arma::mat res = Y / (arma::sqrt(arma::diagvec(Y)) * arma::trans(arma::sqrt(arma::diagvec(Y))));
    
        return res;
    }
    

    要在/src/Makevars{.win}中为包使用定义它:

    PKG_CPPFLAGS = -DARMA_64BIT_WORD=1