通过指针堆数据结构

时间:2016-11-14 10:41:39

标签: data-structures heap

建议一种有效的方法来查找满足以下条件的堆中的最后位置:

1)通过指针而非通过数组

2)我们可以在哪里插入或删除节点

我可以在O(n)时间复杂度中找到它,但建议采用O(logn)或O(1)时间复杂度的方法。

2 个答案:

答案 0 :(得分:2)

我在这里假设您的意思是二进制堆。

如果您知道堆中有多少个节点,则可以通过将计数转换为二进制,然后遵循从高到低的位路径,在O(log n)时间内找到最后一个节点。也就是说,如果该位为0则采用左侧节点,如果该位为1则采用右侧节点。

例如,如果堆中有三个节点,则计数的二进制表示为11.根始终是第一个节点,只剩下1。然后,您使用右分支获取最后一个节点。 / p>

假设堆中有5个节点:

(model 
  (define-fun z () (_ FloatingPoint 11 53)
    (_ NaN 11 53))
  (define-fun y () (_ FloatingPoint 11 53)
    (fp #b0 #b00000000000 #x0000000004000))
  (define-fun x () (_ FloatingPoint 11 53)
    (_ +zero 11 53))
)

在二进制文件中,那就是101.所以你要扎根。下一个数字是0,所以你采取左分支。下一个数字是1,所以你选择正确的分支,留在节点5。

如果你想要下一个可用的插槽,你可以在计数中添加1并执行相同的操作。所以6将是110.你取根,然后是右分支,3的左子是你添加新节点的地方。

你可以对任何d-ary heap做同样的事情,除了转换为基数d而不是转换为二进制。因此,如果您的堆节点每个最多有三个子节点,那么您将计数转换为基数3,并使用与上面相同的逻辑。

另一种方法是维护对堆中最后一个节点的引用,每次修改堆时都要更新它。或者,如果您想知道下一个节点的放置位置,则保留对没有两个子节点的第一个节点的引用。那是O(1),但每次插入或删除时都需要记账。

答案 1 :(得分:1)

我正在回答我自己的问题,在插入堆(通过指针堆)时没有必要跟踪下一个指针,即使没有必要跟踪父,我附加运行java代码的堆,所有可能的方法都包含在其中,getMin()= O(1),insert()= O(logn),extractMin = O(logn),decreasePriorityOfHead = O(logn),我已经为通用代码实现了它,所以它会有助于理解通用概念。

  class MinHeap<E extends Comparable<E>> {

    private DoublyNode<E> root;
    private int size = 0;

    public DoublyNode<E> getRoot() {
        return root;
    }

    public void setRoot(DoublyNode<E> root) {
        this.root = root;
    }

    public int getSize() {
        return size;
    }

    public void setSize(int size) {
        this.size = size;
    }

    public MinHeap() {

    }

    public MinHeap(E data) {
        this.root = new DoublyNode<E>(data);
        this.size++;
    }

    private class NodeLevel<E extends Comparable<E>> {
        private int level;
        private DoublyNode<E> node;

        public int getLevel() {
            return level;
        }

        public void setLevel(int level) {
            this.level = level;
        }

        public DoublyNode<E> getNode() {
            return node;
        }

        public void setNode(DoublyNode<E> node) {
            this.node = node;
        }

        public NodeLevel(DoublyNode<E> node, int level) {
            this.node = node;
            this.level = level;
        }

    }

    public void insert(E data) {
        if (this.size == 0) {
            this.root = new DoublyNode<E>(data);
            this.size++;
            return;
        }
        DoublyNode<E> tempRoot = this.root;
        Integer insertingElementPosition = this.size + 1;
        char[] insertingElementArray = Integer.toBinaryString(
                insertingElementPosition).toCharArray();
        DoublyNode<E> newNode = new DoublyNode<E>(data);
        int i;
        for (i = 1; i < insertingElementArray.length - 1; i++) {
            if (newNode.getData().compareTo(tempRoot.getData()) < 0) {
                this.swap(newNode, tempRoot);
            }
            char c = insertingElementArray[i];
            if (c == '0') {
                tempRoot = tempRoot.getLeft();
            } else {
                tempRoot = tempRoot.getRight();
            }
        }
        // newNode.setParent(tempRoot);
        if (newNode.getData().compareTo(tempRoot.getData()) < 0) {
            this.swap(newNode, tempRoot);
        }
        if (insertingElementArray[i] == '0') {
            tempRoot.setLeft(newNode);
        } else {
            tempRoot.setRight(newNode);
        }
        this.size++;
    }

    public void swap(DoublyNode<E> node1, DoublyNode<E> node2) {
        E temp = node1.getData();
        node1.setData(node2.getData());
        node2.setData(temp);
    }

    public E getMin() {
        if (this.size == 0) {
            return null;
        }
        return this.root.getData();
    }

    public void heapifyDownWord(DoublyNode<E> temp) {
        if (temp == null) {
            return;
        }
        DoublyNode<E> smallerChild = this.getSmallerChild(temp);
        if (smallerChild == null) {
            return;
        }
        if (smallerChild.getData().compareTo(temp.getData()) < 0) {
            this.swap(temp, smallerChild);
            this.heapifyDownWord(smallerChild);
        }
    }

    public DoublyNode<E> getSmallerChild(DoublyNode<E> temp) {
        if (temp.getLeft() != null && temp.getRight() != null) {
            return (temp.getLeft().getData()
                    .compareTo(temp.getRight().getData()) < 0) ? temp.getLeft()
                    : temp.getRight();
        } else if (temp.getLeft() != null) {
            return temp.getLeft();
        } else {
            return temp.getRight();
        }
    }

    public E extractMin() {
        if (this.root == null) {
            return null;
        }
        E temp = this.root.getData();
        if (this.root.getLeft() == null && this.root.getRight() == null) {
            this.root = null;
            this.size--;
            return temp;
        }

        DoublyNode<E> parentOfLastData = this.getParentOfLastData();
        if (parentOfLastData.getRight() != null) {
            this.root.setData(parentOfLastData.getRight().getData());
            parentOfLastData.setRight(null);
        } else {
            this.root.setData(parentOfLastData.getLeft().getData());
            parentOfLastData.setLeft(null);
        }
        this.heapifyDownWord(this.root);
        return temp;
    }

    public DoublyNode<E> getParentOfLastData() {
        if (this.size == 0) {
            return null;
        }

        DoublyNode<E> tempRoot = this.root;
        Integer insertingElementPosition = this.size;
        char[] insertingElementArray = Integer.toBinaryString(
                insertingElementPosition).toCharArray();
        int i;
        for (i = 1; i < insertingElementArray.length - 1; i++) {
            char c = insertingElementArray[i];
            if (c == '0') {
                tempRoot = tempRoot.getLeft();
            } else {
                tempRoot = tempRoot.getRight();
            }
        }
        return tempRoot;
    }

    public DoublyNode<E> getParentOfLastEmptyPosition() {
        if (this.size == 0) {
            return null;
        }

        DoublyNode<E> tempRoot = this.root;
        Integer insertingElementPosition = this.size + 1;
        char[] insertingElementArray = Integer.toBinaryString(
                insertingElementPosition).toCharArray();
        System.out.println(insertingElementArray.toString());
        int i;
        for (i = 1; i < insertingElementArray.length - 1; i++) {
            char c = insertingElementArray[i];
            if (c == '0') {
                tempRoot = tempRoot.getLeft();
            } else {
                tempRoot = tempRoot.getRight();
            }
        }
        return tempRoot;
    }

    public void print() {
        if (this.root == null) {
            System.out.println("Heap via pointer is empty!");
            return;
        }
        System.out.println("\n Heap via pointer is:- ");
        Queue<NodeLevel<E>> dataQueue = new Queue<NodeLevel<E>>();
        Queue<Space> spaceQueue = new Queue<Space>();
        dataQueue.enQueue(new NodeLevel<E>(this.root, 1));
        int heightOfTree = this.getHeightOfHeap();
        Double powerHeghtBST = Math.pow(heightOfTree, 2);
        spaceQueue.enQueue(new Space(powerHeghtBST.intValue(), false));
        while (!dataQueue.isEmpty()) {
            Space space = spaceQueue.deQueue();
            NodeLevel<E> nodeLevel = dataQueue.deQueue();
            while (space.isNullSpace()) {
                space.printNullSpace();
                spaceQueue.enQueue(space);
                space = spaceQueue.deQueue();
            }
            space.printFrontSpace();
            System.out.print(nodeLevel.getNode().getData().printingData());
            space.printBackSpace();
            if (nodeLevel.getNode().getLeft() != null) {
                dataQueue.enQueue(new NodeLevel<E>(nodeLevel.getNode()
                        .getLeft(), nodeLevel.getLevel() + 1));
                spaceQueue.enQueue(new Space(space.getSpaceSize() / 2, false));
            } else {
                spaceQueue.enQueue(new Space(space.getSpaceSize() / 2, true));
            }
            if (nodeLevel.getNode().getRight() != null) {
                dataQueue.enQueue(new NodeLevel<E>(nodeLevel.getNode()
                        .getRight(), nodeLevel.getLevel() + 1));
                spaceQueue.enQueue(new Space(space.getSpaceSize() / 2, false));
            } else {
                spaceQueue.enQueue(new Space(space.getSpaceSize() / 2, true));
            }
            if (!dataQueue.isEmpty()
                    && nodeLevel.getLevel() + 1 == dataQueue.getFrontData()
                            .getLevel()) {
                System.out.println("\n");
            }
        }
    }

    public int getHeightOfHeap() {
        if (this.size == 0) {
            return 0;
        }
        Double height = Math.log(this.size) / Math.log(2) + 1;
        return height.intValue();
    }

    public void changePriorityOfHeapTop(E data) {
        if (this.root == null) {
            return;
        }
        this.root.setData(data);
        this.heapifyDownWord(this.root);
    }
}

interface Comparable<T> extends java.lang.Comparable<T> {

    /**
     * this methos returns a string of that data which to be shown during
     * printing tree
     * 
     * @return
     */
    public String printingData();
}

public class PracticeMainClass {

    public static void main(String[] args) {
        MinHeap<Student> minHeap1 = new MinHeap<Student>();
        minHeap1.insert(new Student(50, "a"));
        minHeap1.insert(new Student(20, "a"));
        minHeap1.insert(new Student(60, "a"));
        minHeap1.insert(new Student(30, "a"));
        minHeap1.insert(new Student(40, "a"));
        minHeap1.insert(new Student(70, "a"));
        minHeap1.insert(new Student(10, "a"));
        minHeap1.insert(new Student(55, "a"));
        minHeap1.insert(new Student(35, "a"));
        minHeap1.insert(new Student(45, "a"));
        minHeap1.print();
        minHeap1.getMin();
        minHeap1.print();
        System.out
                .println("\nminimum is:- " + minHeap1.getMin().printingData());
        minHeap1.print();
        System.out.println("\nminimum is:- "
                + minHeap1.extractMin().printingData());
        minHeap1.print();
        minHeap1.changePriorityOfHeapTop(new Student(75, "a"));
        minHeap1.print();
    }
}

class DoublyNode<E extends Comparable<E>> {
    private E data;
    private DoublyNode<E> left;
    private DoublyNode<E> right;

    // private DoublyNode<E> parent;
    public DoublyNode() {

    }

    public DoublyNode(E data) {
        this.data = data;
    }

    public E getData() {
        return data;
    }

    public void setData(E data) {
        this.data = data;
    }

    public DoublyNode<E> getLeft() {
        return left;
    }

    public void setLeft(DoublyNode<E> left) {
        this.left = left;
    }

    public DoublyNode<E> getRight() {
        return right;
    }

    public void setRight(DoublyNode<E> right) {
        this.right = right;
    }
    // public DoublyNode<E> getParent() {
    // return parent;
    // }
    // public void setParent(DoublyNode<E> parent) {
    // this.parent = parent;
    // }

}

class Space {
    private boolean isNullSpace = false;
    private String frontSpace;
    private String backSpace;
    private String nullSpace;
    private int spaceSize;

    public boolean isNullSpace() {
        return isNullSpace;
    }

    public void setNullSpace(boolean isNullSpace) {
        this.isNullSpace = isNullSpace;
    }

    public int getSpaceSize() {
        return spaceSize;
    }

    public void setSpaceSize(int spaceSize) {
        this.spaceSize = spaceSize;
    }

    public Space(int spaceSize, boolean isNullSpace) {
        this.isNullSpace = isNullSpace;
        this.spaceSize = spaceSize;

        if (spaceSize == 0) {
            this.frontSpace = "";
            this.backSpace = "";
            this.nullSpace = "  ";
        } else if (spaceSize == 1) {
            this.frontSpace = " ";
            this.backSpace = "";
            this.nullSpace = "    ";
        } else if (spaceSize == 2) {
            this.frontSpace = "  ";
            this.backSpace = "";
            this.nullSpace = "    ";
        } else {
            this.frontSpace = String.format("%" + (spaceSize) + "s", " ");
            this.backSpace = String.format("%" + (spaceSize - 2) + "s", " ");
            this.nullSpace = String.format("%" + 2 * (spaceSize) + "s", " ");

        }
    }

    public void printFrontSpace() {
        System.out.print(this.frontSpace);
    }

    public void printBackSpace() {
        System.out.print(this.backSpace);
    }

    public void printNullSpace() {
        System.out.print(this.nullSpace);
    }

}

class Queue<E> {
    private Node<E> front;
    private Node<E> rear;
    private int queueSize = 0;

    public Queue() {

    }

    public Queue(E data) {
        this.front = new Node(data);
        this.rear = this.front;
    }

    public void enQueue(E data) {
        if (this.rear == null) {
            this.rear = new Node(data);
            this.front = this.rear;
        } else {
            Node newNode = new Node(data);
            this.rear.setNext(newNode);
            this.rear = newNode;
        }
        this.queueSize++;
    }

    public E deQueue() {
        E returnValue;
        if (this.front == null) {
            return null;
        } else if (this.front == this.rear) {
            returnValue = this.front.getData();
            this.front = null;
            this.rear = null;
        } else {
            returnValue = this.front.getData();
            this.front = this.front.getNext();
        }
        this.queueSize--;
        return returnValue;
    }

    public void print() {
        Node temp = this.front;
        System.out.print("\n Queue is:-  ");
        if (temp == null) {
            System.out.println("  Empty! ");
        }
        while (temp != null) {
            System.out.print(temp.getData() + ",");
            temp = temp.getNext();
        }
    }

    public int getQueueSize() {
        return queueSize;
    }

    public E getFrontData() {
        if (this.front == null) {
            System.out.println("queue is empty!");
            return null;
        }
        return this.front.getData();
    }

    public E getRearData() {
        if (this.rear == null) {
            System.out.println("queue is empty!");
            return null;
        }
        return this.rear.getData();
    }

    public boolean isEmpty() {
        return this.front == null;
    }
}

class Node<E> {
    private E data;
    private Node next;

    public Node(E data) {
        this.data = data;
    }

    public E getData() {
        return data;
    }

    public void setData(E data) {
        this.data = data;
    }

    public Node getNext() {
        return next;
    }

    public void setNext(Node next) {
        this.next = next;
    }

}

class Student implements Comparable<Student> {
    private int id;
    private String name;

    @Override
    public int compareTo(Student student) {
        if (this.id == student.id) {
            return 0;
        } else if (this.id < student.id) {
            return -1;
        } else {
            return 1;
        }
    }

    public Student(int id, String name) {
        this.id = id;
        this.name = name;
    }

    public int getId() {
        return id;
    }

    public void setId(int id) {
        this.id = id;
    }

    public String getName() {
        return name;
    }

    public void setName(String name) {
        this.name = name;
    }

    @Override
    public String printingData() {
        // String printingData = "{ id: "+this.id+" name: "+this.name+" }";
        String printingData = String.valueOf(this.id);
        return printingData;
    }

}

此代码的输出为: -

Heap via pointer is:- 
                10              

        30              20      

    35      40      70      60  

  55  50  45
 Heap via pointer is:- 
                10              

        30              20      

    35      40      70      60  

  55  50  45
minimum is:- 10

 Heap via pointer is:- 
                10              

        30              20      

    35      40      70      60  

  55  50  45
minimum is:- 10

 Heap via pointer is:- 
                20              

        30              45      

    35      40      70      60  

  55  50
 Heap via pointer is:- 
                30              

        35              45      

    50      40      70      60  

  55  75